期刊文献+

A unified Minorization-Maximization approach for estimation of general mixture models

下载PDF
导出
摘要 The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期343-362,共20页 高校应用数学学报(英文版)(B辑)
基金 Supported by the National Natural Science Foundation of China(12261108) the General Program of Basic Research Programs of Yunnan Province(202401AT070126) the Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007) the Cross-integration Innovation team of modern Applied Mathematics and Life Sciences in Yunnan Province,China(202405AS350003).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部