摘要
图片模糊集能刻画具有模糊性、不确定性和不一致性的信息,相似度量是刻画两个对象的相似程度。文中研究图片模糊集的相似度量。考虑图片模糊集3个隶属度的信息差,基于指数函数构造出一种新的相似度量。文中提出的相似度量不仅满足相似度量的公理化定义,并且在实际应用中得到合理的计算结果。将相似度量应用到模式识别中,与现存的一些相似度量进行对比分析,结果表明所提出的相似度量不仅可以弥补一些现存相似度量的缺陷,还可以得到合理的计算结果。
Picture fuzzy sets can depict information with fuzziness,uncertainty,and inconsistency.Similarity measure is a measure of the degree of similarity between two objects.The similarity measure between picture fuzzy sets is studied in this paper.Considering the information difference of the three membership degrees of picture fuzzy sets,a new similarity measure is constructed based on exponential function.The similarity measure proposed in this paper not only satisfies the axiomatic definition of the similarity measure,but also yields reasonable computational results in practical applications.We apply the proposed similarity measure to pattern recognition,and compare it with some existing similarity measures in examples.The results show that the proposed similarity measure can not only overcome the shortcomings of some existing similarity measures,but also obtain reasonable calculation results.
作者
高建雷
罗敏霞
GAO Jianlei;LUO Minxia(Department of Data Sciences,China Jiliang University,Hangzhou 310018,China)
出处
《计算机科学》
CSCD
北大核心
2024年第S01期218-222,共5页
Computer Science
基金
国家自然科学基金(12171445)。
关键词
图片模糊集
相似度量
模式识别
Picture fuzzy set
Similarity measure
Pattern recognition