期刊文献+

一种适用于大图的k步可达性查询算法

K-step Reachability Query Algorithm for Large Graphs
下载PDF
导出
摘要 k步可达查询用于在给定的有向无环图(Directed Acyclic Graph,DAG)中回答两点之间是否存在长度不超过k的路径。针对现有方法的索引规模大、查询处理效率低的问题,提出了一种构建在大图上的基于树覆盖的倍增索引来提高索引查询效率,并结合GRAIL算法和改进的FELINE算法对本身就不可达查询点对进行剪枝。基于19个真实的数据集进行了实验测试,并将所提算法与现有算法在构建索引大小、索引时间、查询时间3个指标上进行了实验对比。实验结果验证了所提算法的高效性。 The k-step reachable query is used to answer whether there exists a path of length not exceeding k between two points in agiven directed acyclic graph(DAG).To address the problems of large index size and low query processing efficiency of existing methods,this paper proposes a multiplicative index built on a large graph based on tree cover to improve index query efficiency,and combines GRAIL algorithm and the improved FELINE algorithm for pruning the point pairs of inherently unreachable queries.The paper conducts experimental tests based on 19 real datasets and compares with existing algorithms in three metrics:index size,index time,and query time.The experimental results verify the efficiency of the proposed algorithm in this paper.
作者 同正南 卜天明 TONG Zhengnan;BU Tianming(School of software Engineering,East China Normal University,Shanghai 200062,China)
出处 《计算机科学》 CSCD 北大核心 2024年第S01期651-660,共10页 Computer Science
关键词 k步可达性查询 倍增索引 索引标签 树覆盖 在线搜索 K-step reachability query Multiplicative index Index label Tree cover Online query
  • 相关文献

参考文献4

二级参考文献170

  • 1周水庚 蔚赵春 蒋豪良.图结构数据搜索的概念、问题与进展[J].中国计算机学会通讯,2007,3(8):59-65.
  • 2DESHPANDE M, KURAMOCHI M, WALE N, et al. Frequent substructure-based approaches for classifying chemical compounds [ J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(8) : 1036 - 1050.
  • 3HUAN JUN, WANG WEI, BANDYOPADHYAY D, et al. Mining spatial motifs from protein structure graphs [ C]// Proceedings of the 8th Conference on Research in Computational Molecular Biology. New York: ACM Press, 2004:308 -315.
  • 4KOYUTURK M, GRAMA A, SZPANKOWSKI W. An efficient algorithm for detecting frequent subgraphs in biological networks [ J]. Bioinformatics, 2004, 20(1)" 200-207.
  • 5HU HAI-YAN, YAN XI-FENG, HUANG YU, et al. Mining coherent dense subgraphs across massive biological networks for functional discovery [J]. Bioinformatics, 2005, 21 (1) : 213 - 221.
  • 6BARABASI A L, ALBERT R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439): 509-512.
  • 7FALOUTSOS M, FALOUTSOS P, FALOUTSOS C. On power law relationships of the Internet topology [ C]//Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM Press, 1999: 251 - 262.
  • 8FABRIKANT A, KOUTSOUPIAS E, PAPADIMITRIOU C H. Heuristically optimized trade-offs: A new paradigm for power laws in the Internet [ C]// Proceedings of the 29th International Colloquium on Automata, Languages and Programming. Berlin: Springer-Vedag, 2002:110 - 122.
  • 9KUMAR R, RAGHAVAN P, RAJAGOPALAN S, et al. Stochastic models for the Web graph [ C]// Proceedings of the 41st Annual Symposium on Foundations of Computer Science. Washington,DC: IEEE Computer Society, 2000:57-65.
  • 10BRIN S, PAGE L. The anatomy of a large scale hypertextual Web search engine [ C]// Proceedings of the 7th International Conference on World Wide Web 7. B. V. Amsterdam: Elsevier Science, 1998: 107-117.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部