摘要
为解决基于网络进行药效预测的模型中加入新样本需要重新训练模型的问题,提出基于网络的药效预测方法,并进行了对比实验。该方法可以直接使用训练好的模型编码肿瘤细胞新样本,解决了加入新样本需要重新训练编码模型的问题,提高了药效预测精度,优于其他方法。
To solve the problem of adding new samples to the network-based model for drug efficacy prediction and retraining the model,a network-based drug efficacy prediction method was proposed and comparative experiments were conducted.This method can directly use the trained model to encode new samples of tumor cells,solving the problem of needing to retrain the encoding model to add new samples,improving the accuracy of drug efficacy prediction,and outperforming other methods.
作者
谢新平
汪凤婷
姜晓东
王红强
XIE Xinping;WANG Fengting;JIANG Xiaodong;WANG Hongqiang(School of Mathematics and Physics,Anhui Jianzhu University,Hefei Anhui 230000,China;Medical Oncology Department,The First Affiliated Hospital of University of Science and Technology of China,Hefei Anhui 23000,China;Institute of Intelligent Machines,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei Anhui 230000,China)
出处
《信息与电脑》
2024年第6期60-64,共5页
Information & Computer
基金
国家自然科学基金项目(项目编号:61973295,81872276)
安徽省教育厅科学研究重点项目(项目编号:KJ2021A0633)
安徽省重点研究与开发计划项目(项目编号:201904a07020092)。
关键词
药效预测
知识图谱嵌入
深度学习
pharmacodynamic prediction
knowledge graph embedding
deep learning