期刊文献+

基于深度学习的隧道车道识别优化方法

Tunnel Lane Recognition Optimization Method Based on Deep Learning
下载PDF
导出
摘要 文章提出一种基于深度学习的隧道车道识别优化方法,并构建自制数据集进行了实验验证。首先,研究一个基于深度学习的隧道车道识别框架;其次,针对框架的不足,提出预处理数据以增强数据可学习性,引入MobileNetV3模型有效捕捉隧道内复杂车道结构;最后,通过自制数据集进行实验验证。实验结果显示,在隧道环境中,该方法能够准确识别车道,具有良好的表现。 This paper proposes an optimization method for tunnel lane recognition based on deep learning,and constructs a self-made data set for experimental verification.First,a tunnel lane recognition framework based on deep learning was studied.Secondly,in view of the shortcomings of the framework,data preprocessing was proposed to enhance data learnability,and the MobileNetV3 model was introduced to effectively capture the complex lane structure in the tunnel;Finally,experimental verification was carried out through a self-made data set.Experimental results show that in a tunnel environment,this method can accurately identify lanes and has good performance.
作者 王鹏 贾存军 WANG Peng;JIA Cunjun(Gansu Vocational and Technical College of Communications,Lanzhou Gansu 730207,China)
出处 《信息与电脑》 2024年第6期121-123,共3页 Information & Computer
基金 2022年度甘肃省高等学校创新基金项目(项目编号:2022A-232)。
关键词 深度学习 车道检测 MobileNetV3 deep learning lane detection MobileNetV3
  • 相关文献

参考文献10

二级参考文献34

共引文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部