期刊文献+

DE-MCMC算法对水污染溯源的效果分析

An Analysis of the Effect of DE-MCMC Algorithm on Water Pollution Source Tracing
下载PDF
导出
摘要 采用网络机器人从水质监测大数据平台及相关网站获取实时监测数据,与《地表水环境质量标准》(GB3838-2022)进行比较,锁定污染超标水域,分析该水域的分布特征。利用二维水质模型,建立流经水域中超标指标的动态变化函数,运用DE-MCMC溯源反演算法,模拟污染强度、距污染源位置及污染发生时间,实现污染溯源分析。溯源仿真结果与实际数值相近,最大误差为4.9%,最小误差为2.7%,平均误差为4.4%,表明DE-MCMC算法溯源结果真实可靠。 The real-time water quality monitoring data acquired by web robot from big data platform and related websites were compared with the《Environmental quality standard for surface water》(GB 3838-2022)to identify the water quality incompliant areas whilst analysing their distribution characteristics.By using a two-dimensional water quality model,functions of dynamic variation for standard limit exceeding variables in the flowing-through water areas were established,and a pollution source traceability analysis was then conducted by means of DE-MCMC inversion algorithm to simulate the pollution strength,distance to the location of pollution sources and the time of occurrence.It has been found that the traceability simulation results are quite similar to corresponding observed values with their maximum deviation of 4.9%,minimum deviation of 2.7%,and 4.4% on average in between.It indicates that the effect of using DE-MCMC algorithm to do traceability is authentic and reliable.
作者 徐自江 Xu Zijiang(Bozhou District Ecological Environment Monitoring Station,Zunyi,563100)
出处 《上海环境科学》 2024年第1期34-37,共4页 Shanghai Environmental Sciences
关键词 水质监测数据 水质污染 DE-MCMC算法 Water quality monitoring data Water quality pollution DE-MCMC algorithm
  • 相关文献

参考文献5

二级参考文献14

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部