期刊文献+

基于PIR的办公建筑室内人员定位及动作识别模型

Model for Location and Action Recognition of Indoor Occupant in Office Buildings Based on PIR Sensor Array
原文传递
导出
摘要 准确识别人行为,是办公场景智能化的基础。本研究通过收集场景内的被动红外(PIR)传感器阵列信号,分析人员在不同位置、不同动作强度组合下的数据特征。首先,基于多种机器学习算法建立人员位置和动作同时识别的模型,相较于KNN、RF、SVM、MLP单一模型,Stacking融合模型性能更优、稳定性更好。然后,分析了面向连续数据流时,多时间步长Stacking模型组合表现更优;注重整体指标时,建议选用短时间步长组合模型;注重识别精度时,建议使用长时间步长组合模型。模型识别准确率达0.99,人员位置识别准确率为0.87,人员动作强度识别准确率为0.89。最后,讨论了区域划分和仪器布置对模型的影响。采用大尺度划分方式,人员位置识别准确率提高;小尺度划分方式下,人员定位更精确。可以通过调整PIR传感器的空间布置,减少传感器台数至8台。 The accurate identification of occupant behavior is the foundation of smart workspace.This study employed a passive infrared(PIR)sensor array to monitor occupant in the scene and analyzes the data characteristics of individuals at different positions and action intensity combinations.A recognition model was established utilizing multiple machine learning algorithms.Compared with single models such as KNN,RF,SVM,and MLP,the Stacking fusion model demonstrates superior performance and stability.When confronted with continuous data streams,the Stacking model with multiple time step combinations outperforms others.Considering overall indicators,short time step combination models are recommended;considering identification accuracy,long time step combination models with higher action intensity recognition accuracy are recommended.The model achieves an identification accuracy of 0.99,occupant location identification accuracy of 0.87,and occupant action intensity identification accuracy of 0.89.Then,the impact of region division and instrument layout on the model's performance was discussed.Using large-scale partitioning,the accuracy of occupant location recognition was improved;under small-scale partitioning,the location of occupant is more precise.The number of sensor stations can be reduced to eight by adjusting the spatial layout of PIR sensors.
作者 张静思 赵婷 周翔 ZHANG Jingsi;ZHAO Ting;ZHOU Xiang(Corporate Research Center,Midea Group,Shanghai 201702,China;College of Mechanical and Energy Engineering,Tongji University,Shanghai 201804,China)
出处 《建筑科学》 CSCD 北大核心 2024年第4期8-15,共8页 Building Science
基金 国家重点研发计划“机电系统和可再生能源系统与建筑热过程耦合计算模型开发”(2017YFC0702200)。
关键词 建筑人行为 PIR传感器 动作识别 机器学习 人员位置 occupant behavior PIR sensor occupant action recognition machine learning occupant position
  • 相关文献

参考文献5

二级参考文献38

  • 1秦锋,杨波,程泽凯.分类器性能评价标准研究[J].计算机技术与发展,2006,16(10):85-88. 被引量:27
  • 2董吉虹,白明,郎培,解峰,梁为.热释电红外报警器的设计[J].天津理工大学学报,2007,23(5):72-74. 被引量:4
  • 3Lane N,Miluzzo E, Lu H, et al. A Survey of Mobile Phone Sensing [ J ]. IEEE Communications Magazine, 2010,48(9) :140-150.
  • 4Want R. The Active Badge Location System [ J ]. ACM Transactions on Information Systems, 1992, 10 ( 1 ) : 91-102.
  • 5Ward A, Jones A,Hopper A. A New Location Technique for the Active Office [ J]. IEEE Personal Communica- tions, 1997,4( 5 ) :42-47.
  • 6Ni L M ,Liu Yunhao ,Lau Y C, et al. LANDMARC : Indoor Location Sensing Using Active RFID[ C ]//Proceedings of the 1st IEEE International Conference on Pervasive Computing and Communications. Washington D, C. , USA : IEEE Press,2003:407-415.
  • 7Yu Kegen,Montillet J P, Rabbachin A. UWB Location and Tracking for Wireless Embedded Networks I J ]. Signal Processing ,2006,86 ( 9 ) :2153-2171.
  • 8Hightower J, Borriello G. Location Systems for Ubiquitous Computing [ J ]. IEEE Computer, 2001 , 34(8) :57-66.
  • 9Subbu K,Zhang Chi,Luo Jun, et al. Analysis and Status Quo of Smartphone-based Indoor Localization Systems : J ]. IEEE Wireless Communications ,2014,21 (4) : 106-112.
  • 10Li Binghao, Quader L J, Dempster A G. On Outdoor Positioning with WiFi[ J:. Journal of Global Positioning Systems,2008,7 ( 1 ) : 18-26.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部