期刊文献+

基于机器识别的带钢表面缺陷检测研究

Study on Surface Defect Detection of Strip Steel Based on Machine Identification
下载PDF
导出
摘要 针对传统带钢表面缺陷检测技术落后、效率不高及小目标识别能力不足等问题,提出一种改进的YOLOv5s-Tiny目标检测模型,在保持模型较小计算量的同时提升检测速度和识别精度。通过将主干网络GSP-Darknet53替换为轻量级GhostNet网络,减少模型参数的数量,提高推理速度。在主干网络加入CBAM注意力机制,通过通道注意力机制和空间注意力机制对特征信息进行融合增强,提高小目标检测精度,并将损失函数GIoU改进为EIoU,提高检测框定位能力。最后将改善后的训练模型格式转换后安装到手机安卓端验证优化的有效性。结果表明:在东北大学数据集中,改进后模型检测精度提高1.5%的同时,召回率提升了1.5%,参数量减少12.3%;安卓端检测速度约为120 ms,完成带钢缺陷的实时检测。 In order to solve the problems of backward traditional strip surface defect detection technology,low efficiency and insuffi-cient small target identification ability,an improved YOLOv5s-Tiny target detection model was proposed,which improved the detection speed and recognition accuracy while maintaining the small calculation amount of the model.The backbone network GSP-Darknet53 was replaced with the lightweight GhostNet network to reduce the number of model parameters and improve the reasoning speed.The CBAM attention mechanism was added to the backbone network to enhance the feature information through channel attention mechanism and spatial attention mechanism to improve the detection accuracy of small target,and the loss function GIoU was improved to EIoU to im-prove the positioning ability of the detection box.Finally,the improved training model format was converted and installed to the Android terminal.The results show that in the Northeastern University data set,the mAP of the improved model is increased by 1.5%,the param-eter volume is reduced by 12.3%,the recall rate is increased by 1.5%,and the Android end detection speed is about 120 ms,which completes the real-time detection of strip steel defects.
作者 付强 朱传军 梁泽启 FU Qiang;ZHU Chuanjun;LIANG Zeqi(School of Mechanical Engineering,Hubei University of Technology,Wuhan Hubei 430068,China)
出处 《机床与液压》 北大核心 2024年第10期194-200,共7页 Machine Tool & Hydraulics
关键词 钢材表面缺陷 小目标检测 YOLOv5s 轻量化 注意力机制 steel surface defects small target detection YOLOv5s lightweight attention mechanism
  • 相关文献

参考文献6

二级参考文献55

  • 1沈立华,孙丰瑞,杨立,秦强.单面法红外检测钢板内壁缺陷温度场研究[J].激光与红外,2006,36(1):19-22. 被引量:6
  • 2韩英莉,颜云辉.基于BP神经网络的带钢表面缺陷的识别与分类[J].仪器仪表学报,2006,27(12):1692-1694. 被引量:27
  • 3[2]Rautaruukki New Technology. Defect Classification in Surface Inspection of Strip Steel. Steel Times, 1992(5): 214~216
  • 4[3]Badger J C, Enright Sean T. Automated surface inspection system. Iron and Steel Engineer, 1996 (3): 48~51
  • 5[4]Parsytech Computer GmbH. Software controlled on-line surface inspection. Steel Times International, 1998(3): 30~35
  • 6[5]Karayiannis N B. Accelerating the training of feed forward Neural Networks using generalized hebbian rules for inintializing the internal representation. IEEE Transactions on Neural Networks, 1996, (7)2: 419~426
  • 7[6]Sking J, Jorg R. Self-learning fuzzy controllers based on temporal back propagation. IEEE Trans. on Neural Networks, 1992, 3(5): 714~723
  • 8[7]Amari S, Murata N, Muller K R, et al. Asymptotic statistical theory of overtraining and cross-validation. In: Anon. ed. METR 95-06. Tokyo: Dept. of Mathematical Engineering and Information, Physics, Univ. of Tokyo, 1995.
  • 9杨水山,何永辉,赵万生.Boosting优化决策树的带钢表面缺陷识别技术[J].红外与激光工程,2010,39(5):954-958. 被引量:10
  • 10罗志勇,王斌,刘栋玉,吕新民,江涛.带钢表面缺陷检测系统的发展[J].钢铁,1996,31(S1):127-131. 被引量:13

共引文献315

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部