摘要
通过自定义人工神经网络(artificial neural network,ANN),借助其优秀的函数拟合功能,针对骨料/砂浆基质二相混凝土,求解间接均匀化理论中微分法的高度非线性耦合微分方程的解析解,得到了混凝土体积模量和剪切模量分别与骨料体积分数的函数关系,并与数值模拟的结果进行了对比.结果表明,基于ANN的求解方法快速且具有更高的精度.此外,通过解构ANN的方法给出了在细观力学参数不变的条件下由骨料体积分数、初始孔隙率直接计算骨料/砂浆基质/孔隙三相混凝土弹性模量的公式.结果表明,对于不同骨料体积分数和初始孔隙率的混凝土样本,该公式均有较高的计算精度,同时避免了传统均匀化方法的复杂分析和大量假设,为复合材料均匀化方法研究提供了新思路.
By means of the self-defined artificial neural network(ANN)and its excellent function fitting func-tion,aimed at aggregate-mortar matrix 2-phase concrete,the analytical solutions of the highly nonlinear cou-pling differential equation of the differential method in the indirect homogenization theory were given,the func-tional relations between the volume modulus and the shear modulus of concrete and the volume fractions of ag-gregate were obtained respectively,and the results were compared with those of numerical simulation.The re-sults show that,the method based on the ANN is fast and has higher precision.In addition,the method of de-constructing ANN provides the formula of calculating the elastic modulus of aggregate-mortar matrix-pore 3-phase concrete directly from aggregate volume fractions and initial porosities under constant meso-mechanical parameters.For concrete samples with different aggregate volume fractions and initial porosities,the formula has higher calculation accuracy,and avoids the complex analysis and many assumptions of the traditional hom-ogenization method.The work provides a new idea of homogenization method for composite materials.
作者
刘溢凡
马小敏
王志勇
王志华
LIU Yifan;MA Xiaomin;WANG Zhiyong;WANG Zhihua(Institute of Applied Mechanics,College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China;Shanxi Key Laboratory of Material Strength and Structural Impact,Taiyuan 030024,P.R.China)
出处
《应用数学和力学》
CSCD
北大核心
2024年第5期554-570,共17页
Applied Mathematics and Mechanics
基金
国家自然科学基金(12272257
12202303)
山西省基础研究计划(202203021211169)。
关键词
人工神经网络
混凝土
均匀化
微分方程
弹性模量
artificial neural network
concrete
homogenization
differential equation
elasticity modulus