期刊文献+

部分信息下带时滞的鲁棒资产负债博弈问题研究

Robust Asset-liability Investment Game with Time Delay under Partial Information
下载PDF
导出
摘要 研究了部分可观测信息下带时滞的鲁棒资产负债博弈问题,运用滤波理论,将不完全信息转化为完全信息,以终端相对财富的效用最大化为目标,构建了不完全信息带时滞的鲁棒资产负债博弈问题,借助动态规划原理,得到了均衡投资策略和值函数的显示表达式。最后,通过数值模拟验证了参数对均衡投资策略和值函数的影响,主要得出了不完全信息下投资者的效用低于完全信息。所以,投资者应尽可能的搜集与投资相关的更多信息,以便于做出更加明智的决策。 This paper discusses the robust asset-liability management problem of maximizing the expected utility of the terminal wealth under partial information with delay,that is,the investors can observe the risky asset price with random drift which is not directly observable in the financial market.It is reduced to a partially observed stochastic differential game problem.This paper tries to an effort to find the equilibrium strategies by maximizing the expected utility of the insurer’s terminal wealth with delay under the worst-case scenario of the alternative measures.By using the idea of filtering theory and the dynamic programming approach,we derive the robust equilibrium strategies and value functions explicitly.Finally,some numerical examples are presented.Obviously,the value function is higher in the full information case than it in the partial information case.Therefore,investors should collect more information related to investment as much as possible in order to make more informed decisions.
作者 杨璐 张成科 朱怀念 徐萌 YANG Lu;ZHANG Chengke;ZHU Huainian;XU Meng(School of Management,Guangdong Polytechnic Normal University,Guangzhou 510450;School of Economics,Guangdong University of Technology,Guangzhou 510520;School of Management,Guangdong University of Technology,Guangzhou 510520)
出处 《工程数学学报》 CSCD 北大核心 2024年第3期551-567,共17页 Chinese Journal of Engineering Mathematics
基金 国家社会科学基金(21FJYB025) 广州市哲学社科规划(2023GZGJ15).
关键词 鲁棒均衡策略 滤波理论 时滞 效用最大化 部分信息 robust equilibrium strategies filtering theory delay utility maximization partial information
  • 相关文献

参考文献7

二级参考文献31

  • 1Bai LiHua,Guo JunYi.Optimal dynamic excess-of-loss reinsurance and multidimensional portfolio selection[J].Science China Mathematics,2010,53(7):1784-1801. 被引量:14
  • 2吴臻,于志勇.LINEAR QUADRATIC NONZERO-SUM DIFFERENTIAL GAMES WITH RANDOM JUMPS[J].应用数学和力学,2005,26(8):945-950. 被引量:3
  • 3房海滨,王春峰.基于利率风险的保险公司资产负债管理研究[J].中国管理科学,2007,15(2):9-14. 被引量:3
  • 4R Issacs. Differentialgames[M]. New York: John Wiley and Sons, 1965.
  • 5E Pardoux, S Peng. Adapted solution of backward stochastic differential equation[J]. Systems and Control Letter, 1990, 14:55 - 61.
  • 6F Antonelli. Backward-forward stochastic differential equations[ J]. Ann Appl Prob, 1993, 3: 777- 793.
  • 7Y Hu, S Peng. Solution of forward-backward stochastic differential euqations[J]. Probab Theory and Rel Fields, 1995, 103:273 - 283.
  • 8S Peng, Z Wu. Fully coupled forward-backward stochastic differential equations and applications to optimal control[ J]. Siam J Control and Optim, 1999, 37(3) :825 - 843.
  • 9S Hamadene. Nonzero sum linear-quadratic stochastic differential games and backward-forward equations [ J]. Stochastic Anal Appl, 1999, 17:117- 130.
  • 10R S Liptser, A N Shiryayev. Statistics of random process[ M]. New York: Springer-Verlag, 1977.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部