期刊文献+

On convergence of covariance matrix of empirical Bayes hyper-parameter estimator

原文传递
导出
摘要 Regularized system identification has become the research frontier of system identification in the past decade.One related core subject is to study the convergence properties of various hyper-parameter estimators as the sample size goes to infinity.In this paper,we consider one commonly used hyper-parameter estimator,the empirical Bayes(EB).Its convergence in distribution has been studied,and the explicit expression of the covariance matrix of its limiting distribution has been given.However,what we are truly interested in are factors contained in the covariance matrix of the EB hyper-parameter estimator,and then,the convergence of its covariance matrix to that of its limiting distribution is required.In general,the convergence in distribution of a sequence of random variables does not necessarily guarantee the convergence of its covariance matrix.Thus,the derivation of such convergence is a necessary complement to our theoretical analysis about factors that influence the convergence properties of the EB hyper-parameter estimator.In this paper,we consider the regularized finite impulse response(FIR)model estimation with deterministic inputs,and show that the covariance matrix of the EB hyper-parameter estimator converges to that of its limiting distribution.Moreover,we run numerical simulations to demonstrate the efficacy of ourtheoretical results.
出处 《Control Theory and Technology》 EI CSCD 2024年第2期149-162,共14页 控制理论与技术(英文版)
基金 supported in part by the National Natural Science Foundation of China(No.62273287) by the Shenzhen Science and Technology Innovation Council(Nos.JCYJ20220530143418040,JCY20170411102101881) the Thousand Youth Talents Plan funded by the central government of China.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部