期刊文献+

Identification of the Hammerstein nonlinear system with noisy output measurements

原文传递
导出
摘要 In this research, we present a methodology to identify the Hammerstein nonlinear system with noisy output measurements. The Hammerstein system presented is comprised of neural fuzzy model (NFM) as its static nonlinear block and auto-regressive with extra input (ARX) model as its dynamic linear block, and a two-step procedure is accomplished using signal combination. In the first step, in the case of input–output of Gaussian signals, the correlation function-based least squares (CF-LS) technique is utilized to identify the linear block, solving the problem that the intermediate variable connecting nonlinear and linear blocks cannot be measured. In the second step, to improve the identification accuracy of the nonlinear block parameters, an improved particle swarm optimization technique is developed under input–output of random signals. The validity and accuracy of the presented scheme are verified by a numerical simulation and a practical nonlinear process, and the results illustrate that the proposed methodology can identify well the Hammerstein nonlinear system with noisy output measurements.
出处 《Control Theory and Technology》 EI CSCD 2024年第2期203-212,共10页 控制理论与技术(英文版)
基金 supported by the National Natural Science Foundation of China(62003151) the Changzhou Science and Technology Bureau(CJ20220065,CM20223015) the Qinglan Project of Jiangsu Province of China the Zhongwu Youth Innovative Talents Support Program in Jiangsu University of Technology.
  • 相关文献

参考文献2

二级参考文献24

  • 1丁锋.多变量系统的辅助模型辨识方法的收敛性分析[J].控制理论与应用,1997,14(2):192-200. 被引量:28
  • 2Fang F, Reed E, Dickason D K, et al. Technology review of multi-agent systems and tools[R]. Navy Personnel Research Studies and Technology Millington TN ,2005.
  • 3Chen H F. Pathwise convergence of recursive identification algorithms for Hammerstein systems[J] . IEEE Transactions on Automatic Control, 2004, 49(10) :1641-1649.
  • 4Chen Xingmin. Recursive identification for MIMO Hammerstein systems[J]. IEEE Transactions on Automatic Control,2010 ,56( 4) :895-902.
  • 5Westwick D T, Kearney R E. Separable least squares i?dentification of nonlinear Hammerstein models: Application to stretch reflex dynamics[J]. Annals of Biomedical Engineering,2001 ,29(8) :707-718.
  • 6Sun L, Liu W, Sano A. Identification of a dynamical system with input nonlinearity[J]. lEE Proceedings of Control Theory and Applications lET, 1999,146 ( 1 ) : 41-51.
  • 7WangJ, Sano A, Shook D, Chen T, et al. A blind approach to closed-loop identification of Hammerstein systems[J]. IntJ Control,2007 ,80(2) :302-313.
  • 8Bai E W. Identification of linear systems with hard input nonlinearities of known structure[J]. Automatica, 2002 , 38(5) :853-860.
  • 9Krzyzak A. On nonparametric estimation of nonlinear dynamic systems by the Fourier series estimate[J]. Signal Processing, 1996,52(3) :299-321.
  • 10Boutayeb M, Aubry D, Darouach M. A robust and recursive identification method for MISO Hammerstein model[AJ. Control' 96, UKACC International Conference on lET[CJ . Washington DC: IEEE, 1996 : 234-239.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部