期刊文献+

模糊偏序集中模糊子集的上下确界能否定义为模糊点

Can we Define Fuzzy Points to be the Joins/Meets of Fuzzy Subsets of Fuzzy Posets?
原文传递
导出
摘要 模糊序理论(又称为量化序理论)是近年来模糊数学的一个研究热点,在模糊拓扑学、模糊domain理论、模糊粗糙集理论和模糊概念格理论中具有重要作用.本文尝试寻找如下问题的解答:模糊偏序集中模糊子集的上下确界能否定义为模糊点?结论表明,这种想法几乎无法成功实现. Fuzzy order theory(also called quantitative order theory)is a hot point in the study of theoretical aspect of fuzzy mathematics,which has important applications in fuzzy topology,fuzzy domain theory,fuzzy rough set theory and fuzzy formal concept analysis,etc.This paper aims to make an attempt to find the solution of the question that can we define fuzzy points to be the suprema/infima of fuzzy subsets of a fuzzy poset?Unfortunately,results show that the idea can seldom be successful.
作者 路玲霞 赵蕾 姚卫 LU Ling-xia;ZHAO Lei;YAO Wei(School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《模糊系统与数学》 北大核心 2024年第1期81-87,共7页 Fuzzy Systems and Mathematics
基金 国家自然科学基金项目重点项目(批准号:12231007) 国家自然科学基金项目面上项目(批准号:12371462) 江苏省“双创人才”项目(JSSCRC202521).
关键词 模糊偏序集 上确界 下确界 模糊点 Fuzzy posets Supremum Infimum Fuzzy point
  • 相关文献

参考文献4

二级参考文献39

  • 1Zadeh L A.Fuzzy sets[J].Information and Control,1965,8:338-353.
  • 2Wanger K R.Liminf convergence in Ω-categories[J].Theoretical Computer Science,1997,184:61-104.
  • 3Fan L.A new approatch to quantitative domain theory[J].Electronic Notes in Theoretical Computer Scicnce,2001,45:77-87.
  • 4Zhang Q Y,Fan L.Continuity in quantitative domains[J].Fuzzy Sets and Systems,2005,154:118-131.
  • 5Lai H L,Zhang D X.Complete and directed complete/2-eategories[J].Theoretical Computer Science,2007,388:1-25.
  • 6Yao W,Lu L X.Fuzzy Galois connections on fuzzy posets[J].Mathematical Logic Quarterly,2009,55:84-91.
  • 7Zhang Q Y,Xie W X,Fan L.Fuzzy complete lattices[J].uzzy Sets and Systems,2009,160:2275-2291.
  • 8Yao W.Quantative domains via fuzzy sets:Part Ⅰ:Continuity of fuzzy directed complete posets[J].Fuzzy Sets and Systems,2010,161:973-987.
  • 9Zhao D S.Semicontinuous lattiees[J].Algebra Universalis,1997,37:458-476.
  • 10Weng K H,Zhao D S.Lattices of Scott-closed sets[J].Commentationes Mathematicae Universitatis Carolinae,2009,50:297-314.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部