期刊文献+

微通道翼型导流肋强化传热数值研究

Numerical Study on Heat Transfer Enhancement of Microchannel With Airfoil Ribs
原文传递
导出
摘要 随着电子设备的集成度和功率密度的提高,电子芯片的高功耗和高集成度将使电子设备的散热量不断增加。因此,散热已成为高性能电子设备性能发展的主要瓶颈之一。本文提出了一种含翼型导流肋微通道热沉,翼型导流肋可实现局部加速和冲击掺混的双重强化传热作用。采用ANSYS FLUENT数值分析了翼型导流肋的攻角、出射角、长度和数量等主要几何参数对微通道流动传热特性的影响规律。研究发现:相比攻角和出射角,肋长度和肋数量对微通道阻力与传热性能的影响更为显著,强化传热综合性能评价表明本文提出的含翼型分流肋的微通道相比光滑微通道可在相同压降的条件下获得更高的换热量。 With the improvement of the integration and power density of electronic devices,the high power consumption and high integration of electronic chips will make the heat dissipation of electronic devices continue to increase.Therefore,heat dissipation has become one of the main bottlenecks in the performance development of high-performance electronic devices.In this paper,a microchannel heat sink with airfoil ribs is proposed,and the airfoil ribs can enhance heat transfer by locally accelerating of fluid fow and mixing of fuid fow.ANSYS FLUENT was used to analyze the infuence of the main geometric parameters of airfoil rib such as attack angle,exit angle,length and number on the fow and heat transfer characteristics of microchannel.It is found that the influence of rib length and rib number on the fow resistance and heat transfer performance of the microchannel is more significant than that of the attack angle and the exit angle.Compared with smooth microchannel,the proposed microchannel with airfoil ribs shows better comprehensive heat transfer enhancement performance under the constrain of same pressure drop.
作者 张剑飞 徐星 夏毅康 高伟 屈治国 ZHANG Jianfei;XU Xing;XIA Yikang;GAO Wei;QU Zhiguo(Key Laboratory of Thermo-Fluid Science and Engineering of MOE,School of Energy and Power Engineering,Xi'an Jiaotong University,Xi'an 710049,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2024年第5期1431-1439,共9页 Journal of Engineering Thermophysics
基金 山西省科技计划揭榜招标项目(No.202001101014)。
关键词 电子器件热管理 强化传热 微通道 翼型导流肋:优化设计 thermal management of electronic devices heat transfer enhancement microchannels airfoil ribs optimization
  • 相关文献

参考文献1

二级参考文献12

  • 1Tuckerman D B, Pease R F W. High-Performance Heat Sinking for VLSI [J]. IEEE Electron Device Letters, 1981, 2(5): 126-129.
  • 2Qu W, Mala G M, Li D. Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels [J]. International Jour- nal of Heat and Mass Transfer, 2000, 43(21): 3925-3936.
  • 3Wu H Y, Cheng P. An Experimental Study of Convec- tive Heat Transfer in Silicon Microchannels with Different Surface Conditions [J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2547-2556.
  • 4Morini G L. Single-phase Convection Heat Transfer in Mi- crochannels: a Review of Experiment Results [J]. Interna- tional Journal of Thermal Sciences, 2004, 43:631-651.
  • 5Ali M M, Ramadhyani S. Experiments on Convective Heat Ttransfer in Corrugated Channels [J]. Experimental Heat Transfer, 1992, 5(3): 175-193.
  • 6Kosar A, Mishra C, Peles Y. Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins [J]. Journal of Fluids Engineering, 2005, 127:419-430.
  • 7Peles Y, Kosar A, Mishra C, et al. Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink [J]. In- ternational Journal of Heat and Mass Transfer, 2005, 48: 3615-3627.
  • 8Kosax A, Peles Y. Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink [J]. Journal of Heat Transfer, 2006, 128:121- 131.
  • 9Prasher R S, Dirner J, Chang J, et al. Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-fins Under Cross Flow for Water As Fluid [J]. Journal of Heat Transfer, 2007, 129(2): 141-153.
  • 10Zukauskas A. Heat Transfer from Tubes in Cross-Flow [J]. Advances in Heat Transfer, 1987, 18:87-159.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部