期刊文献+

关于Levine-O'Sullivan序列

On Levine-O'Sullivan Sequence
原文传递
导出
摘要 Levine-O’Sullivan序列Q={q1,q2,…}定义为q1=1,qn=max1≤k≤n-1{(+1)(n-qk)},n=2,3,…令Wn=(n+1)qn-nqn-1+1,s(n)=1/qn-1/(n(n+1))log(n(Wn+1))/(Wn-n).[Acta Math.Sinica(Chinese Ser.),2015,58(4):529-534]中证明了s(n)>1/n1.667对于所有的n>2500均成立,从而肯定了[Sci.China Math.,2013,56(5):951-966]中提出的猜想.本文证明了limn→∞log s(n)/log n=-√5+1/2. The Levine-O'Sullivan sequence Q={q_1,q_2,…}is defined as q_1=1 and q_n=max_(1≤k≤n-1){(k+1)(n-q_k)}for n=2,3,....Let Wn=(n+1)q_n-nq_(n-1)+1 and s(n)=1/q_n-1/n(n+1)log n((W_n+1))/(W_n-n).By confirming a conjecture posed in[Sci.China Math.,2013,56(5):951-966],it has been proved in[Acta Math.Sinica(Chinese Ser.),2015,58(4):529-534]that s(n)>1/n~(1.667)for all n>2500.In this paper,we prove that lim_(n→∞)log s(n)/log n=√5+1/2.
作者 薛方刚 XUE Fanggang(School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing,Jiangsu,210044,P.R.China)
出处 《数学进展》 CSCD 北大核心 2024年第3期662-666,共5页 Advances in Mathematics(China)
关键词 Levine-O’Sullivan序列 sum-free集合 FIBONACCI序列 Levine-O'Sullivan sequence sum-free set Fibonacci sequence
  • 相关文献

参考文献6

二级参考文献16

  • 1ERDOS P, TURAN P. On a problem of Sidon in additive number theory, and on some related problems [J]. J. London Math. Soc., 1941, 16: 212-215.
  • 2ERDOS P. Problems and Results in Combinatorial Analysis and Combinatorial Number Theory [M]. Wiley- Intersci. Publ., Wiley, New York, 1991.
  • 3LEVINE E, O'SULLIVAN J. An upper estimate for the reciprocal sum of a sum-free sequence [J]. Acta Arith., 1977/78, 34(1): 9-24.
  • 4LEVINE E. An extremal result for sum-free sequences [J]. J. Number Theory, 1980, 12(2): 251-257.
  • 5ABBOTT H L. On sum-free sequences [J]. Acta Arith., 1987, 48(1): 93-96.
  • 6ZHANG Zhengxiang. A B2-sequence with larger reciprocal sum [J]. Math. Comput., 1993, 60: 835-839.
  • 7GUY R K. Unsolved Problems in Number Theory [M]. Third edition. Springer-Verlag, New York, 2004.
  • 8Abbott H L. On sum-free sequences. Acta Arith, 1987, 48: 93-6.
  • 9Erd?s P. Remarks in number theory III: Some problems in additive number theory. Mat Lapok, 1962, 13: 28-8.
  • 10Guy R K. Unsolved Problems in Number Theory. Third Edition, E28. New York: Springer-Verlag, 2004.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部