期刊文献+

基于FAERS数据库尼达尼布心血管不良事件信号挖掘及分析 被引量:1

Mining and analyzing cardiovascular adverse event signals for nintedanib based on the FDA Adverse Event Reporting System(FAERS)database
原文传递
导出
摘要 目的旨在使用美国食品与药品管理局不良事件报告系统(food and drug administration adverse event reporting system,FAERS)数据库挖掘尼达尼布的不良反应信号并进行分析。方法收集FAERS数据库2014年7月至2023年9月以尼达尼布作为怀疑药物的不良事件报告病例17547例,并使用世界卫生组织药品不良反应术语集进行标准化处理。采用报告比值比法(reporting odds ratio,ROR)、比例报告比值法(proportional reporting ratio,PRR)和多项伽玛分布法(multi-item gamma passion shrink-er,MGPS)进行不良反应信号的检测。结果在FAERS数据库中共提取17547份以尼达尼布为主要怀疑药物的不良反应病例报告。男性患者占比最高(9709例,55.3%),65~85岁患者最多(8856例,50.5%),美国报告最多(10209例,58.2%),而2022年报告最多(2876例,17.46%)。利用ROR法、PRR法和MGPS法共计得到24个心血管不良反应信号。其中,阵发性心律失常、主动脉破裂、主动脉瓣钙化、心脏瓣膜手术和心导管插入的ROR值排名靠前。在报告数量方面,高血压(385例)、血压升高(291例)、心肌梗死(182例)、低血压(175例)和房颤(142例)居前。与现有说明书相比较,高血压和心肌梗死的不良反应信号与挖掘信号一致,但主动脉破裂、主动脉瓣钙化、房颤等不良反应尚未在说明书中提及。结论临床应用尼达尼布前应进行充分的用药评估,特别是对于存在血管疾病、缺血性心脏病和心律失常等高危患者,还需加强心电图、电解质、心脏超声等监测工作。临床医生也应关注不良反应信号,不仅限于说明书中的内容,以确保用药的安全性。 Objective To analyze the adverse reaction signals of nintedanib using the food and drug administration adverse event reporting system(FAERS)database.Methods Cases reported in the FAERS database from the July of 2014 to September of 2023 with nintedanib as suspected cause of adverse drug events were collected.After standardization of the WHO adverse drug reaction terminology,the reporting odds ratio method(ROR),proportional reporting ratio method(PRR)and multinomial gamma Posson distribution(MGPS)methods were used for adverse reaction signal detection.Results In total,17,547 adverse reaction case reports listing nintedanib as the primary suspected drug were extracted from the FAERS database.Most patients were male(9,709 cases,55.3%).The age mainly ranged from 65 to 85(8,856 cases,50.5%).The majority of cases were reported from United States(10,209 cases,58.2%),and the largest number of cases was reported in 2022(2,876 cases,17.46%).In total,24 cardiovascular adverse reaction signals were obtained through the ROR,PRR and MGPS methods,among which the RORs were highest for paroxysmal arrhythmia,aortic rupture,aortic valve calcification,heart valve surgery,and cardiac catheterization were ranked higher.The reported adverse reactions included hypertension(385 cases),elevated blood pressure(291 cases),myocardial infarction(182 cases),hypotension(175 cases),and atrial fibrillation(142 cases).The adverse reaction signals were consistent with the excavation signals,although adverse reactions such as aortic rupture,aortic valve calcification,and atrial fibrillation were not listed in the drug instructions.Conclusion Drug evaluation should be performed before the clinical use of nintedanib,especially for high-risk patients with cardiovascular diseases such as vascular disease,ischemic heart disease,and arrhythmia.Monitoring using electrocardiogram,electrolyte measurement,cardiac ultrasound,and other techniques should be strengthened,and clinicians should pay attention to adverse reactions beyond those listed in the instructions are included to ensure the safe use of this drug.
作者 高雯 张鸽 魏来 苏琳 GAO Wen;ZHANG Ge;WEI Lai;SU Lin(Department of Cardiology,The Fourth People's Hospital of Jinan,Jinan 250031,Shandong,China;Department of Respiratory and Critical Care,The Fourth People's Hospital of Jinan,Jinan 250031,Shandong,China;School of Law,Nanchang University,Nanchang 330031,Jiangxi,China)
出处 《山东大学学报(医学版)》 CAS 北大核心 2024年第3期47-53,共7页 Journal of Shandong University:Health Sciences
关键词 尼达尼布 不良事件报告系统 真实世界研究 数据挖掘 心血管不良反应信号 Nintedanib Adverse event reporting system Real-world research Data mining Cardiovascular adverse reaction signals
  • 相关文献

参考文献2

二级参考文献25

  • 1顾海,吴艳.德日两国药品不良反应救济制度的运行模式对我国的启示[J].中国医院管理,2006,26(10):19-21. 被引量:23
  • 2Arlett PR, Kurz X. New approaches to strengthen pham,aco vigilance[J]. Drug Discov Today,2011,8(1 ) .-e15 e19.
  • 3Tuccori M, I.api F, Testi A, et al. Drug induced taste and smell alterations a case/non-case evaluation of an italian dalabase of spontaneous adverse drug reaction reporting[J]. Drug Saf 2011,34 (111) : 849 859.
  • 4Waller P, Heeley E, Moselyey J. hnpact analysis of signals detected from spontaneous adverse drug reaction reporting data [J]. Drug Saf,2005,28 (10): 843 850.
  • 5Bate A. Bayesian confidence propagation neural network[J]. Drug 8af,2007,30 (7) : 623-625.
  • 6Hauben M , Reich L, Chung S. Postmarketing surveillance of potentially fatal reactions to ontology drugs: potential utility of two signal-detection algorithms [J]. Eur J Clin Pharmacol, 2004,60:747 750.
  • 7Giezen TJ, Mantel-Teeuwisse AK, Meyboom RH,et al. Map- ping the safety profile of biologicals a disproportionality analy sis using the WHO adverse drug reaction database, vigiBase [J] Drug Saf,2010,33 (10).. 865 878.
  • 8Szarfman A, Machado SG, O'Neill RT. Use of screening algo- rithms and computer systems to efficiently signal higher than expected combinationsof drugs and events in the US FDA's spontaneous reports database[J]. Drug Saf,2002,25 (6): 381- 392.
  • 9Kim JY, Kim M, Ha JH,et al. Signal detection of methyl phenidate by comparing a spontaneous reporting database with a claims database[J]. Regular Toxicol Pharmacol, 2011,61 : 154-160.
  • 10叶小飞,王海南,陈文,傅政,贺佳.数据挖掘在药物警戒中的应用[J].中国药物警戒,2008,5(1):36-40. 被引量:30

共引文献21

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部