期刊文献+

带有饱和治疗函数的SIS模型的几类分支分析

Several bifurcation analyses of the SIS model with saturated treatment functions
下载PDF
导出
摘要 研究了具有标准发生率和饱和治疗函数的SIS传染病模型的几类分支.该模型中使用的饱和治疗函数是一个连续且可微的函数,用以说明当治愈率较低以及感染人数较多时延迟治疗所产生的影响.讨论了系统无病平衡点和地方病平衡点的存在性,证明了该系统存在倒向分支,分析了系统平衡点的局部和全局稳定性,讨论了该系统Hopf分支和Bogdanov-Takens分支的存在情况,得出了相应结论并且给出了系统的分支相图,以及针对研究得出的数学结果提出了一些合理化建议. Several bifurcations of the SIS epidemic model with standard incidence and saturation treatment functions are studied.The saturation treatment function used in this model is a continuous and differentiable function that accounts for the effect of delayed treatment when the cure rate is low and the number of infections is large.The existence of disease-free and endemic equilibrium is discussed and it is shown that the system has a backward bifurcation.The local and global stability of the equilibrium of the system are analysed separately.The existence of Hopf and Bogdanov-Takens bifurcations is shown.The corresponding conclusions are drawn,the bifurcation phase diagram of the system is given,and some reasonable suggestions are made for the mathematical results obtained from the study.
作者 张加男 张伟鹏 ZHANG Jia-nan;ZHANG Wei-peng(School of Mathematics and Statistics,Northeast Normal University,Changchun 130024,China;Department of Mathematics,Jinan University,Guangzhou 510632,China)
出处 《东北师大学报(自然科学版)》 CAS 北大核心 2024年第2期17-26,共10页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11971096) 吉林省自然科学基金资助项目(YDZJ202101ZYTS154).
关键词 传染病模型 饱和治疗 稳定性 分支 epidemic model saturation treatment stability bifurcation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部