期刊文献+

基于YOLOv5算法的学生课堂行为识别研究

Research on student classroom behavior recognition based on YOLOv5 algorithm
下载PDF
导出
摘要 随着智慧课堂和教育大数据挖掘的普及,创建一种智慧课堂中学生学习数据的自动检测和分析方法成为可能。基于YOLOv5模型实现两类学习数据:班级同学计数、学习行为识别。该模型对低头写字、低头看书、抬头听课、转头、举手、站立、小组讨论七种学生课堂行为进行识别,以此辅助教师判断学生学习情况并做出教学决策。研究表明,检测结果精确度达到97.92%。 With the popularization of smart classrooms and educational data mining,our project aims to create an automatic detection and analysis method for student learning data in a smart classroom.Based on the YOLOv5 model,two types of learning data are implemented:classmate counting and learning behavior recognition.This model recognizes seven types of student class⁃room behaviors,which assists teachers in judging student learning situations and making pedagogical decisions,including writing with head down,reading with head down,listening with head up,turning,raising hand,standing,and group discussion.Research shows that the detection accuracy of the model reaches 97.921%.
作者 马瑞珵 陈继 王炳怀 龙俊丞 刘宇 Ma Ruicheng;Chen Ji;Wang Binghuai;Long Juncheng;Liu Yu(School of Electronic Information,Southwest Minzu University,Chengdu 610225,China)
出处 《现代计算机》 2024年第8期62-65,71,共5页 Modern Computer
基金 四川省大学生创新创业训练计划项目(X202210656224)。
关键词 学生行为识别 YOLOv5 计算机视觉技术 student behavior recognition YOLOv5 computer visual technology
  • 相关文献

参考文献7

二级参考文献92

  • 1顾小清,王炜.支持教师专业发展的课堂分析技术新探索[J].中国电化教育,2004(7):18-21. 被引量:342
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3AGGARWAL J K,CAI Q.Human motion analysis:a review[J].Computer Vision and Image Understanding,1999,73(3):428-440.
  • 4GAVRILA D M.The visual analysis of human movement:a survey[J].Computer Vision and Image Understanding,1999,73(1):82-98.
  • 5BASHIR F I,KHOKHAR A A,SCHONFELD D.Object trajectory based activity classification and recognition using hidden Markov models[J].IEEE Trans on Image Processing,2007,16 (7):1912-1919.
  • 6ZHU Guang-yu,XU Chang-sheng.Action recognition in broadcast tennis video[C] //Proc of the 18th International Conference on Patter Recognition.New York:IEEE,2006=251-254.
  • 7CHEN H S,CHEN H T,CHEN Y W,et al.Human action recognition using star skeleton[C] //Proc of the 4th ACM International Workshop on Video Surveillance and Sensor Networks.New York:ACM,2006:179-182.
  • 8EIGAMMAL A,HARWOODD,DAVIS L.Non-parametric model for background subtraction[C] //Proc of ECCV.London:SpringerVerlag,2000:751-767.
  • 9LEVENSHTEIN V L.Pinary codes capable of correcting deletions,insertions and reversals[J].Soviet Physics Doklady,1966,163 (4):707-710.
  • 10GORELICK L,BLANK M,SHECHTMAN E,et al Action as space-time shapes[J].IEEE Trans on Pattern Analysis and MachineIntelligence,2007,29(12):2247-2253.

共引文献379

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部