期刊文献+

Integrated CO_(2)capture and reduction catalysis:Role ofγ-Al_(2)O_(3)support,unique state of potassium and synergy with copper

原文传递
导出
摘要 Carbon dioxide capture and reduction(CCR)process emerges as an efficient catalytic strategy for CO_(2)capture and conversion to valuable chemicals.K-promoted Cu/Al_(2)O_(3)catalysts exhibited promising CO_(2)capture efficiency and highly selective conversion to syngas(CO+H_(2)).The dynamic nature of the Cu-K system at reaction conditions complicates the identification of the catalytically active phase and surface sites.The present work aims at more precise understanding of the roles of the potassium and copper and the contribution of the metal oxide support.Whileγ-Al_(2)O_(3)guarantees high dispersion and destabilisation of the potassium phase,potassium and copper act synergistically to remove CO_(2)from diluted streams and promote fast regeneration of the active phase for CO_(2)capture releasing CO while passing H_(2).A temperature of 350℃is found necessary to activate H_(2)dissociation and generate the active sites for CO_(2)capture.The effects of synthesis parameters on the CCR activity are also described by combination of ex-situ characterisation of the materials and catalytic testing.
机构地区 Catalysis Engineering
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第6期113-122,共10页 环境科学学报(英文版)
  • 相关文献

参考文献3

二级参考文献4

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部