期刊文献+

Abundance and sources of particulate polycyclic aromatic hydrocarbons and aromatic acids at an urban site in central China

原文传递
导出
摘要 We conducted a simultaneous field study of PM_(2.5)-bound particulate polycyclic aromatic hydrocarbons(PAHs)and aromatic acids(AAs)in a polluted city Zhengzhou to explore the concentration,sources and potential conversion pathways between PAHs and AAs in different seasons.The average concentrations of PM_(2.5),28PAHs and 8AAs during the sampling period were 77μg/m^(3),75 ng/m^(3),and 283 ng/m^(3),respectively.The concentration of both28PAHs and 8AAs were highest in winter and lowest in summer with ratios of 6.3 and 2.3,respectively.PAHs with 5-7 rings were the main components of PAHs(52%),followed by 4rings PAHs(30%)and 2-3 rings PAHs(18%).According to the source appointment results obtained by positive matrix factorization,the main sources of PAHs were combustion and vehicle emissions,which account for 37%and 34%,respectively.8AAs were divided into three groups,including four benzene dicarboxylic acids(B2CAs),three benzene tricarboxylic acids(B3CAs)and one benzene tetracarboxylic acid(B4CA).And interspecies correlation analysis with PM_(2.5)source markers were used to investigate potential sources.Phthalic acid(o-Ph)was the most abundant specie of 8AAs(157 ng/m^(3),55%of 8AAs),which was well correlated with sulfate.Meanwhile,B3CAs and B4CA were highly correlated with sulfate and weakly correlated with levoglucosan,suggesting that secondary formation was their main source.As logical oxidation products of PAHs,o-Ph and B3CAs showed good correlations with a number of PAHs,indicating possible photochemical oxidation pathway by PAHs.In addition,O_(3),NO_(2),temperature and relative humidity have positive effects on the secondary formation of B3CAs.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第8期155-168,共14页 环境科学学报(英文版)
基金 supported by the Natural Science Foundation of Henan Province(No.232300421395) the National Key Research and Development Program of China(No.2017YFC0212400)。
  • 相关文献

参考文献6

二级参考文献83

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部