摘要
In this study,the cobalt-nickel layered double hydroxides(CoNi LDH)were synthesized with a variety of Co/Ni mass ratio,as CoxNiyLDHs.In comparison,Co1Ni3LDH presented the best peroxymonosulfate(PMS)activation efficiency for 2,4-dichlorophenol removal.Meanwhile,CoNi LDH@Nickel foam(CoNi LDH@NF)composite membrane was constructed for enhancing the stability of catalytic performance.Herein,CoNi LDH@NF-PMS system exerted high degradation efficiency of 99.22%within 90 min for 2,4-DCP when[PMS]_(0)=0.4 g/L,Co^(1)Ni^(3)LDH@NF=2 cm×2 cm(0.2 g/L),reaction temperature=298 K.For the surface morphology and structure of the catalyst,it was demonstrated that the CoNi LDH@NF composite membrane possessed abundant cavity structure,good specific surface area and sufficient active sites.Importantly,·OH,SO_(4)·^(-)and^(1)O_(2)played the primary role in the CoNi LDH@NF-PMS system for 2,4-DCP decomposition,which revealed the PMS activation mechanism in CoNi LDH@NF-PMS system.Hence,this study eliminated the stability and adaptability of CoNi LDH@NF composite membrane,proposing a new theoretical basis of PMS heterogeneous catalysts selection.
基金
supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C733)
the Open Project of Key Disciplines of Physics(No.XJZDXKphy202309)
the Research and Innovation Team Cultivation Program of Yili Normal University(No.CXZK2021004)。