期刊文献+

High-performance,stable CoNi LDH@Ni foam composite membrane with innovative peroxymonosulfate activation for 2,4-dichlorophenol destruction

原文传递
导出
摘要 In this study,the cobalt-nickel layered double hydroxides(CoNi LDH)were synthesized with a variety of Co/Ni mass ratio,as CoxNiyLDHs.In comparison,Co1Ni3LDH presented the best peroxymonosulfate(PMS)activation efficiency for 2,4-dichlorophenol removal.Meanwhile,CoNi LDH@Nickel foam(CoNi LDH@NF)composite membrane was constructed for enhancing the stability of catalytic performance.Herein,CoNi LDH@NF-PMS system exerted high degradation efficiency of 99.22%within 90 min for 2,4-DCP when[PMS]_(0)=0.4 g/L,Co^(1)Ni^(3)LDH@NF=2 cm×2 cm(0.2 g/L),reaction temperature=298 K.For the surface morphology and structure of the catalyst,it was demonstrated that the CoNi LDH@NF composite membrane possessed abundant cavity structure,good specific surface area and sufficient active sites.Importantly,·OH,SO_(4)·^(-)and^(1)O_(2)played the primary role in the CoNi LDH@NF-PMS system for 2,4-DCP decomposition,which revealed the PMS activation mechanism in CoNi LDH@NF-PMS system.Hence,this study eliminated the stability and adaptability of CoNi LDH@NF composite membrane,proposing a new theoretical basis of PMS heterogeneous catalysts selection.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第7期235-248,共14页 环境科学学报(英文版)
基金 supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C733) the Open Project of Key Disciplines of Physics(No.XJZDXKphy202309) the Research and Innovation Team Cultivation Program of Yili Normal University(No.CXZK2021004)。
  • 相关文献

参考文献1

二级参考文献29

  • 1Wei T Y, Chen C H, Chien H C, et al.A cost-effective supercapacitor material of ultrahigh specific capacitances:Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process[J].Adv Mater, 2010, 22:347-351.
  • 2Wang H, Casalongue H S, Liang Y, et al.Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudo-capacitor materials[J].J Am Chem Soc, 2010, 132:7472-7477.
  • 3Hu Z A, Xie Y L, Wang Y X, et al.Synthesis of α-cobalt hydroxides with different intercalated anions and effects of intercalated anions on their morphology, basal plane spacing and capacitive property[J].J Phys Chem C, 2009, 113:12502-12508.
  • 4Frackowiak E.Carbon materials for supercapacitor application[J].Phys Chem Chem Phys, 2007, 9:1774-1785.
  • 5Khomenko V, Raymundo-Piňero E, Frackowiak E, et al.High-voltage asymmetric supercapacitors operating in aqueous electrolyte[J].Appl Phys A:Mater Sci Process, 2006, 82:567-573.
  • 6Park J H, Park O O.Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes[J].J Power Sources, 2002, 111:185-190.
  • 7Yan J, Fan Z, Sun W, et al.Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density[J].Adv Funct Mater, 2012, 22:2632-2641.
  • 8Frackowiak E, Béguin F.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon, 2001, 39:937-950.
  • 9Qu Q T, Shi Y, Li L L, et al.V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution[J].Electrochem Commun, 2009, 11:1325-1328.
  • 10Khomenko V, Raymundo-Pińero E, Béguin F.Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium[J].J Power Sources, 2006, 153:183-190.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部