摘要
静脉血栓栓塞症是骨科最常见的并发症之一。近年来,机器学习广泛应用于骨科,机器学习其本质是运用算法对大量数据进行分析,构建风险预测模型预测未知临床结局发生的风险。机器学习通过将高危风险因素整合,帮助医务人员精准识别和筛选出静脉血栓栓塞症高危人群,为临床医务人员及时给予个体化干预措施提供科学依据。本文概述了机器学习的概念和分类、机器学习提高模型预测性能方面的优势以及机器学习在静脉血栓栓塞症患者构建风险预测模型的应用现状。
Venous thromboembolism(VTE)is a prevalent complication in orthopedics.In recent years,machine learning has been widely applied in orthopedics.The essence of machine learning lies in utilizing algorithms to analyze vast amounts of data and construct risk prediction models that can accurately forecast unknown clinical outcomes.By integrating high-risk factors,machine learning aids medical professionals in precisely identifying and screening individuals with a high risk of VTE and offering them timely individualized interventions.This article reviews the concept and classification of machine learning,the advantages of machine learning in enhancing model prediction ability,and the current application status of machine learning in constructing risk prediction models for patients with VTE.
作者
刘瑞婷
谢素丽
冯微微
宋力
李谊
吕梦爽
郑喜灿
LIU Ruiting;XIE Suli;FENG Weiwei;SONG Li;LI Yi;LYU Mengshuang;ZHENG Xican(School of Nursing,Xinxiang Medical University,Xinxiang 453003,Henan Province,China;Department of Orthopedics,No.988 Hospital of Joint Logistic Support Force,Zhengzhou 450007,Henan Province,China;The Third Outpatient Department,No.988 Hospital of Joint Logistic Support Force,Zhengzhou 450007,Henan Province,China;Department of Otolaryngology,No.988 Hospital of Joint Logistic Support Force,Zhengzhou 450007,Henan Province,China;Department of Nursing,No.988 Hospital of Joint Logistic Support Force,Zhengzhou 450007,Henan Province,China)
出处
《新乡医学院学报》
CAS
2024年第6期590-595,共6页
Journal of Xinxiang Medical University
基金
河南省医学科技攻关联合共建项目(编号:LHGJ20210818)。