期刊文献+

基于GA-PSO-BP与灰色关联的光伏短期功率预测

Short-term PV Power Prediction Based on GA-PSO-BP and Grey Correlation
下载PDF
导出
摘要 光伏功率预测本身是一个较为复杂的非线性问题,为此首先介绍了在一般情况下影响光伏发电功率预测的客观因素,然后根据客观影响因素进行灰色关联度分析,把预测日作为参考,找到满足条件的日期作为训练样本。针对反向传播(BP)神经网络易于陷入局部极值的问题,利用粒子群优化(PSO)算法与遗传算法(GA)融合寻优,将粒子群中最优粒子进行排序,对高适应度粒子进行重组,反之进行变异;同时引入莱维飞行与随机游动策略增强算法跳出局部最优的能力,加入自适应权重因子平衡算法的探索与寻优能力。仿真实例证明,在不同的天气条件下,GA-PSO-BP模型与BP、PSO-BP、极限学习机(ELM)模型相比,预测效果更好,预测误差更小。 Photovoltaic(PV)power generation forecast is a more complex nonlinear problem,so this paper first introduces the objective factors that affect PV power generation forecast under normal circumstances,and then conducts grey correlation analysis according to the objective factors,takes the forecast date as a reference,and searches for the date meeting the conditions as a training sample.In order to solve the problem that BP neural network is easy to fall into local extremum,particle swarm(PSO)and genetic algorithm(GA)are used to search for optimization.The optimal particles in the particle swarm are sorted,the high-fitness particles are recombined,and vice versa.At the same time,Levy flight and random walk strategies are introduced to enhance the ability of the algorithm to jump out of the local optimal,and the exploration and optimization ability of the adaptive weight factor balance algorithm is added.Simulation examples show that GA-PSO-BP model has better prediction effect and smaller error than BP,PSO-BP and ELM model under different weather conditions,and can effectively avoid prematurity.
作者 孙玉波 涂承谦 李斌 缪健锋 SUN Yubo;TU Chengqian;LI Bin;MIAO Jianfeng(Ningde Power Supply Company,State Grid Fujian Electric Power Co.,Ltd.,Ningde 352100,Fujian Province,China)
出处 《电力与能源》 2024年第2期219-227,共9页 Power & Energy
基金 国网福建省电力有限公司科技项目(52139022000N)。
关键词 光伏功率预测 粒子群优化 遗传算法 灰色关联 PV generation forecast particle swarm genetic algorithm grey correlation
  • 相关文献

参考文献17

二级参考文献175

  • 1潘国荣.基于时间序列分析的动态变形预测模型研究[J].武汉大学学报(信息科学版),2005,30(6):483-487. 被引量:47
  • 2雷绍兰,孙才新,周湶,张晓星.电力短期负荷的多变量时间序列线性回归预测方法研究[J].中国电机工程学报,2006,26(2):25-29. 被引量:93
  • 3张永光,王兰锋,吕开云.小浪底水利枢纽大坝变形的灰色预测模型[J].测绘科学,2006,31(6):80-81. 被引量:7
  • 4孔英会,安静,车辚辚,刘云峰.基于增量DFT概要的数据流聚类算法[J].华北电力大学学报(自然科学版),2007,34(5):85-89. 被引量:3
  • 5Kennedy J,Eberhart RC.Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks . 1995
  • 6Guang-Bin Huang,Qin-Yu Zhu,Chee-Kheong Siew.Extreme learning machine: Theory and applications[J]. Neurocomputing . 2006 (1)
  • 7Huang, Guang-Bin,Wang, Dian Hui,Lan, Yuan.Extreme learning machines: A survey. International Journal of Machine Learning and Cybernetics . 2011
  • 8Guang-Bin Huang.An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels[J]. Cognitive Computation . 2014 (3)
  • 9Conejo, Antonio J.,Plazas, Miguel A.,Espínola, Rosa,Molina, Ana B.Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Transactions on Power Systems . 2005
  • 10Jooyoung Jeon,James W. Taylor.Using Conditional Kernel Density Estimation for Wind Power Density Forecasting. Journal of the American Statistical Association . 2012

共引文献426

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部