摘要
针对光波导在成像过程中阵列中心易发生偏移现象,其相控阵列的中心偏检测精度较低的问题,提出一种集成光波导相控阵列中心偏检测方法。利用光束传输法对集成光波导的光波场展开模型,根据光栅衍射理论分析集成光波导的扫描特性。当相控阵列中心处于偏离状态时,相控阵列面之间在集成光波导中处于不平行状态,在光学自准直法的基础上结合集成光波导的扫描特性,计算相控阵列在集成光波导中的平行度,获得相控阵列面在x方向和y方向中的平行度,以此为依据检测集成光波导相控阵列中心的偏离程度。实验结果表明:本文方法在x方向和y方向中的检测误差为0.001 mm和0.002 mm,检测结果与实际结果相符,证明所提方法具有较高的检测精度。
In the imaging process of optical waveguide,the center of the array is prone to shift,and the detection accuracy of the center shift of the phased array is low.For this reason,a method to detect the center deviation of integrated optical waveguide phased array is proposed.The optical wave field of integrated optical waveguide is modeled by the beam propagation method,and the scanning characteristics of integrated optical waveguide are analyzed according to the grating diffraction theory.When the center of the phased array is in the deviation state,the phased array planes are not parallel in the integrated optical waveguide.On the basis of the optical autocollimation method and the scanning characteristics of the integrated optical waveguide,the parallelism of the phased array in the integrated optical waveguide is calculated to obtain the parallelism of the phased array plane in the x and y directions,and the deviation degree of the integrated optical waveguide phased array center is detected based on this.The experimental results show that the detection errors of the proposed method in the x and y directions are 0.001 and 0.002,and the detection results are consistent with the actual results,which proves that the proposed method has high detection accuracy.
作者
严朝军
吴迪
YAN Chao-jun;WU Di(College of Computer Information and Technology,Three Gorges University,Yichang 443002,China;The Institute of Electronics and Telecommunications,Three Gorges University,Yichang 443002,China)
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024年第4期1099-1104,共6页
Journal of Jilin University:Engineering and Technology Edition
基金
中央引导地方科技发展项目(2019ZYYD0007)。
关键词
集成光波导
相控阵列
光栅衍射理论
光束传输法
光学自准直法
阵列中心偏检测
integrated optical waveguide
phased array
grating diffraction theory
beam propagation method
optical autocollimation method
array center deviation detection