期刊文献+

结合星载激光和多光谱影像的城市树种分类

Urban Tree Species Classification Combining Spaceborne LiDAR and Multispectral Imagery
下载PDF
导出
摘要 城市树木种类是影响城市森林固碳能力和维持生态系统稳定的重要因素,但城市树木空间分布广泛、所处环境复杂,目前缺少适用的树种分类模型,因此尝试将星载激光引入树种分类。综合考虑植被冠层结构、水平光谱与空间环境特征,并通过特征空间分析定量度量各参数贡献以构建最优特征集合,最后利用支持向量机(SVM)算法建立结合星载激光与光学影像的城市树种分类模型。上海市内4个代表性区域树种分类实验结果表明,所构建的融合模型准确性较高,Kappa系数达到0.82,总体分类精度为87.04%。星载激光能够在城市树种分类中发挥重要作用,其表征的植被三维结构特征与空间环境特征一同对城市树种分类做出了突出贡献。 The urban tree species are an important factor affecting the ability of carbon sequestration by urban forest and the maintenance of ecosystem stability.However,due to the wide spatial distribution and complex environment of urban trees,there is a lack of tree species classification models applicable to cities.In this paper,the spaceborne LiDAR is introduced into tree species classification.Considering the vegetation canopy structure,horizontal spectra and spatial environment characteristics,the optimal feature set is constructed by quantitatively measuring the contribution of each parameter through feature space analysis.Finally,an urban tree species classification model combining spaceborne LiDAR and optical images is established using support vector machine(SVM)algorithm.Four representative regions in Shanghai are selected for validation,and the results show that the proposed fusion model has a high accuracy with the Kappa coefficient reaching 0.82 and the overall classification accuracy of 87.04%.The spaceborne LiDAR plays an important role in the urban tree species classification,and its retrieved 3D structural variables of vegetation together with spatial environmental characteristics play a major contribution to urban tree species classification.
作者 王书凡 刘春 吴杭彬 李巍岳 WANG Shufan;LIU Chun;WU Hangbin;LI Weiyue(College of Surveying and Geo-Informatics,Tongji University,Shanghai 200092,China;School of Environmental and Geographical Sciences,Shanghai Normal University,Shanghai 200234,China)
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期970-981,共12页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(42130106) 上海市科委“科技创新行动计划”优秀学术带头人项目(20XD1403800)。
关键词 城市树种分类 星载激光 光谱影像 支持向量机(SVM)算法 urban tree species classification spaceborne LiDAR spectral imagery support vector machine(SVM)algorithm
  • 相关文献

参考文献3

二级参考文献28

  • 1张友静,高云霄,黄浩,任立良.基于SVM决策支持树的城市植被类型遥感分类研究[J].遥感学报,2006,10(2):191-196. 被引量:43
  • 2张秀英,冯学智,丁晓东,王珂.基于面向对象方法的IKONOS影像城市植被信息提取[J].浙江大学学报(农业与生命科学版),2007,33(5):568-573. 被引量:16
  • 3YANG J,MCBRIDE J,ZHOU J,et al.The urban forest in Beijing and its role in air pollution reduction[J].Urban Forestry&Urban Greening,2005,3(2):65-78.
  • 4YANG J,ZHAO L,MCBRIDE J,et al.Can you see green assessing the visibility of urban forests in cities[J].Landscape and Urban Planning.2009,91(2):97-104.
  • 5STROHBACH M W,HAASE D.Above-ground carbon storage by urban trees in Leipzig,Germany:Analysis of patterns in a European city[J].Landscape and Urban Planning,2012,104(1):95-104.
  • 6LI X,SHAO G.Object-based urban vegetation mapping with highresolution aerial photography as a single data source[J].International Journal of Remote Sensing,2013,34(3):771-789.
  • 7PU R,LANDRY S,YU Q.Object-based urban detailed land cover classification with high spatial resolution IKONOS imagery[J].International Journal of Remote Sensing,2011,32(12):3285-3308.
  • 8ZHOU W,HUANG G,TROY A,et al.Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas:A comparison study[J].Remote Sensing of Environment,2009,113(8):1769-1777.
  • 9MATHIEU R,ARYAL J,CHONG A K.Object-based classification of Ikonos imagery for mapping large-scale vegetation communities in urban areas[J].Sensors,2007,7(11):2860-2880.
  • 10WASER L,K CHLER M,J TTE K,et al.Evaluating the potential of WorldView-2data to classify tree species and different levels of ash mortality[J].Remote Sensing,2014,6(5):4515-4545.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部