期刊文献+

电致伸缩效应下水中电子输运特性

Electron transport characteristics in water under electrostrictive effect
下载PDF
导出
摘要 水中快脉冲(脉宽数ns甚至ps级)放电过程中,快脉冲在电极附近引起电致伸缩效应导致电极附近形成空化区.电子在空化区内积累能量并高速进入水体,电子在水中的输运特性是水中脉冲放电起始与发展的关键因素.本文构建了考虑弹性与非弹性碰撞截面的水中电子输运物理模型,采用蒙特卡罗方法研究不同能量电子的透射与散射径迹结构特征,研究了弹性碰撞、电离与激发碰撞频次随电子初始能量的变化以及水中电子能量损失特征.结果表明,较低能量的电子(约20 eV)受水分子散射影响能量损失较大,透射能力较弱,随着电子初始能量的增高,电子受水分子散射作用的影响逐渐减小,具有更强的液体穿透能力;弹性碰撞次数远大于激发与电离碰撞,导致电子散射距离与透射深度相当,电离碰撞和激发碰撞次数随电子能量升高显著增加;电子入射能量越高,其能损越大,随运动距离增加,能损急剧下降,与电子的平均电离能量损失W变化趋势一致.本研究可为探究快脉冲放电机理提供重要数据基础. The transport characteristics of electrons are crucial for the initiation and development of pulse discharge in water.In this work,we develop a physical model of electron transport that consides elastic and inelastic collision cross sections.The purpose of this study is to investigate frequency variations of elastic collisions,ionization and excitation collisions with different initial electron energy values,and to explore the characteristic of electron energy loss in water.The Monte Carlo method is employed to track structure characteristics of electron transmission and scattering under varying energy values.The results show that the electrons of lower energy(~20 eV)are significantly impacted by the water molecule scattering,hence their transmission capacities are weakened.When the incident energy of electron reaches 100 eV,the scattering deviation distance is roughly equivalent to the transmission depth,about 6-8 nm,and the maximum deviation angleθshift~60°.When the electron incident energy is in a range of 10-1000 eV,the number of elastic collisions is much greater than the number of excitation and ionization collisions,and the number of ionization collisions and excitation collisions increases significantly with the increase of electron energy.The higher the electron incident energy,the greater the energy loss is.However,the energy loss decreases sharply with the extension of penetration distance.For the ionization collision,the average ionization energy loss,W,decreases rapidly with the increase of electron energy,and ultimately maintains at a level of 20-30 eV,which is consistent with the experimental results reported.
作者 李元 李春鹏 李林波 袁磊 王亚桢 石亚轩 张冠军 Li Yuan;Li Chun-Peng;Li Lin-Bo;Yuan Lei;Wang Ya-Zhen;Shi Ya-Xuan;Zhang Guan-Jun(School of Electrical Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2024年第11期201-209,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:52041702)资助的课题。
关键词 电致伸缩 水中电子输运 透射与散射 碰撞模式 electrostrictive effect electron transport in water transmission and scattering collision type
  • 相关文献

参考文献5

二级参考文献36

  • 1Jones H M,Kunhardt E E.Nanosecond pre-breakdown and breakdown phenomena in water influence of pressure,conductivity,and ionic sheath[C]//Conference Record of the ICDL 12th International Conference on Conduction and Breakdown in Dielectric Liquids.Roma,Italy,1996.
  • 2Jones H M,Kunhardt E E.Development of pulsed dielectric breakdown in liquids[J].J Phys D:Appl Phys,1995,28:178-188.
  • 3Lehr J M,Agee F J,Copeland R,et al.Measurement of the electric breakdown strength of transformer oil in the sub-nanosecond regime[J].IEEE Transactions on Dielectrics and Electrical Insulation,1998,5(6):857-861.
  • 4Mazzetti C,Pompili M,Forster E O.Study of the time to breakdown in transformer oil under impulse conditions[J].IEEE Transactions on Electrical Insulation,1990,25(6):1111-1116.
  • 5Nikjoo H, Uehara S, Emfietzoglou Track-structure codes in radiation D, et al research[J] Radiation Measurement, 2006, 41(9-10): 1052-1074.
  • 6Uehara S, Nikjoo H, Goodhead D T. Cross sections for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region[J] Physics in Medicine and Biology, 1992, 38(12) 1841-1858.
  • 7Emfietzoglou D, Nikjoo H A. Accurate electron inelastic cross sections and stopping powers for liquid water over the 0. 1-10keV range based on an improved dielectric description of the bethe surface[J] Radiation Research, 2007, 167(1): 110-120.
  • 8Nikjoo H, O'Neill P, Goodhead D T, et al. Computational modeling of low-energy electron induced DNA damage by early physical and chemical events[J]. International Journal of Radiation Biology, 1997, 71(5): 467-483.
  • 9Emfietzoglou D, Papamichael G, Androulidakis I, et al. A Monte Carlo study of sub-keV electron transport in water: the influence of the condensed phase[J]. Nuclear Instruments and Methods in Physics Research Section B, 2005, 228(1-4): 341-348.
  • 10Cobut V, Frongillo Y, Patau J P, et al. Monte Carlo simulation of fast electron and proton track structure in liquid water-I, physical and physicochemical aspects[J]. Radiation Physics and Chemistry, 1998, 51(3): 229-243.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部