期刊文献+

考虑不确定能耗和个性化客户需求的电动冷藏车辆路径优化

Route optimization of electric refrigerated vehicle considering energy consumption uncertainty and personalized customer demand
下载PDF
导出
摘要 在国家“双碳”战略下,采用电动冷藏车替代传统燃油车,开展城市冷链配送是大势所趋.电动冷藏车配送作业易受诸多不确定因素的影响,导致电能消耗难以精准估算.如何在能耗不确定条件下确保车辆电池续航里程能完成配送任务,并满足客户对产品新鲜度和个性化时间窗的需求,是电动冷藏车辆路径优化面临的挑战.本文借助车辆纵向动力学模型和微分方程及鲁棒优化理论分析了电动冷藏车配送作业中的能耗影响因素,如电池续航能力限制、能耗不确定性、产品新鲜度和客户软时间窗约束等,及其产生的各项成本,构建了以总成本最小为目标的两阶段路径优化模型,并设计混合遗传粒子群算法对模型求解,最后以案例验证了模型和算法的有效性. To achieve China's carbon peak and neutrality goals,using electric refrigerated vehicles to replace traditional fuel vehicles to carry out urban cold chain distribution becomes a general trend.However,the distribution operation of electric refrigerated vehicles is vulnerable to many uncertain factors,which makes it difficult to accurately estimate the power consumption.How to ensure that the battery life of the vehicle can com‐plete the distribution task and effectively meet customer's demand for product freshness and personalized time window under the condition of uncertain energy consumption is a challenge for the route optimization of electric refrigerated vehicles.In this study,a two-stage vehicle path optimization model with the goal of minimizing the total cost is constructed by comprehensively considering the battery life limit,energy consumption uncertainty,product freshness and customer soft time window constraints.Specifically,based on the force analysis of the driving process of electric refrigerated vehicles using the vehicle longitudinal dynamics model,the driving energy consumption model and auxiliary energy consumption model are put forward to get the total energy consumption model of vehicle distribution operation.Furthermore,the robust optimization method is used to deal with the uncertain parameters in the model.A hybrid genetic particle swarm optimization algorithm is designed to solve the model.Finally,an actual case is used to verify the effectiveness of the model and algorithm.
作者 甘俊伟 李钧 罗永 廖虎昌 GAN Jun-Wei;LI Jun;LUO Yong;LIAO Hu-Chang(School of Economics and Management,Sichuan Tourism University,Chengdu 610100,China;Chengdu Green Low Carbon Research Base,Chengdu 610100,China;Business School,Sichuan University,Chengdu 610064,China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期352-364,共13页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(72171158) 四川省哲学社会科学基金(SCJJ23ND158) 四川省社会科学重点研究基地四川省电子商务与现代物流研究中心课题(DSWL-1) 四川省哲学社会科学重点研究基地川菜发展研究中心项目(CC22G02) 四川省高等学校人文社会科学重点研究基地四川民族山地经济发展研究中心一般项目(SDJJ202216) 四川旅游学院冷链物流科研创新团队项目(21SCTUTY08)。
关键词 电动冷藏车 车辆路径优化 能耗 不确定性 混合遗传粒子群算法 Electric refrigerator vehicle Vehicle routing optimization Energy consumption Uncertainty Hybrid genetic particle swarm optimization algorithm
  • 相关文献

参考文献16

二级参考文献122

共引文献402

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部