期刊文献+

多维平行六面体模型非概率可靠性灵敏度分析

Non-probabilistic reliability sensitivity analysis based ona multidimensional parallelepiped model
下载PDF
导出
摘要 可靠性灵敏度能够反映基本变量分布参数对可靠度的影响程度,为可靠性分析与优化设计提供指导。提出了一种基于多维平行六面体模型的非概率可靠性灵敏度分析方法。首先,给出基本变量域完全位于安全域时采用非概率可靠性指标,而基本变量域与安全域有交集时采用非概率失效度作为可靠性度量的原因。其次,推导结构线性系统的可靠性灵敏度解析式,并进一步探讨所提方法对结构非线性系统的适应性问题。最后,通过3个工程算例验证文中方法有效可行。 Reliability sensitivity can reflect the influence of the distribution parameter of basic variable on reliability and guide reliability analysis and reliability-based optimization,a non-probabilistic reliability sensitivity analysis method is proposed based on a multidimensional parallelepiped model.The explanation is first given that the non-probabilistic reliability index and the non-probabilistic failure degree are respectively used as the reliability measure of structures when the basic variable domain is entirely within and overlaps with the safe domain.The analytical expressions of reliability sensitivity of a linear system is then derived,and their application in nonlinear system is further discussed.Three numerical examples are finally provided to demonstrate the feasibility and effectiveness of the proposed method.
作者 乔心州 裴金星 刘鹏 方秀荣 QIAO Xinzhou;PEI Jinxing;LIU Peng;FANG Xiurong(College of Mechanical Engineering,Xi'an University of Science and Technology,710054 Xi'an,China)
出处 《应用力学学报》 CAS CSCD 北大核心 2024年第3期575-584,共10页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金项目资助项目(No.51775427) 陕西省自然科学基础研究计划项目(No.2019JQ-796)。
关键词 非概率可靠性 灵敏度分析 多维平行六面体模型 可靠性指标 失效度 non-probabilistic reliability sensitivity analysis multidimensional parallelepiped model reliability index failure degree
  • 相关文献

参考文献5

二级参考文献60

  • 1张艳林,张义民,金雅娟,张艳芳.基于均值一阶Esscher’s近似的可靠性灵敏度分析[J].机械工程学报,2011,47(6):168-172. 被引量:6
  • 2郭书祥,张陵,李颖.结构非概率可靠性指标的求解方法[J].计算力学学报,2005,22(2):227-231. 被引量:76
  • 3张义民.汽车零部件可靠性设计[M].北京:北京理工大学出版社,1996:188-220
  • 4[1]Ellishakoff I. Essay on uncertainties in elastic and viscoelastic structures:from A M Freudenthal's criticisms to modern convex modeling [J]. Computers & Structures, 1995, 56(6): 871~895.
  • 5[2]Ben-Haim Y. Convex models of uncertainty in radial pulse buckling of shells[J]. Journal of Applied Mechanics. 1993, 60(3):683.
  • 6[3]Elishakoff I, Elisseeff P, et al. Non-probabilistic, convex-theoretic modeling of scatter in material properties [J]. AIAA JOURNAL, 1994, 32: 843~849.
  • 7[4]Ben-Haim Y. A non-probabilistic concept of reliability [J]. Structural Safety, 1994, 14(4):227~245.
  • 8[5]Elishakoff I. Discussion on. a non-probabilistic concept of reliability [J]. Structural Safety, 1995, 17(3): 195~199.
  • 9[6]Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models [J]. Structural Safety, 1995, 17(2): 91~109.
  • 10[7]Alefeld G, Claudio D. The basic properties of interval arithmetic, its software realizations and some applications [J]. Computers & Structures. 1998, 67(1/3): 3~8.

共引文献384

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部