摘要
为了充分利用复杂网络中蕴含的信息,增强图自编码器模型的表征能力,提出一种基于二阶图卷积网络的自编码器模型SeGCN-AE。先使用二阶图卷积网络提取实体属性和关系信息,生成低维特征表示;然后使用内积解码器重构复杂网络链接关系矩阵,并通过重构损失对模型进行优化。在两个基准复杂网络数据集实验中,SeGCN-AE的性能始终优于当前较为先进的基线模型,表明二阶关系的引入能够增强模型的表征能力,提升复杂网络分析任务的表现。
In order to make full use of the information contained in complex networks and enhance the representation ability of graph autoencoder models,we propose an autoencoder model SeGCN-AE based on Second-order Graph Convolutional Networks(SeGCN).First,SeGCN is used to extract entity attributes and relationship information,and generate low-dimensional feature representations.Then,the inner product decoder is used to reconstruct the complex network link relationship matrix,and the model is optimized by reconstruction loss.On the two baseline complex network dataset experiments,the performance of SeGCN-AE is always better than current advanced baseline model,indicating that the introduction of second-order relationships can enhance representation ability of the model and improve the performance of complex network analysis tasks.
作者
袁立宁
刘义江
莫嘉颖
罗恒雨
YUAN Lining;LIU Yijiang;MO Jiaying;LUO Hengyu(People's Public Security University of China,Beijing 100038,China;Guangxi Police College,Nanning 530028,China)
出处
《现代信息科技》
2024年第10期64-67,共4页
Modern Information Technology
基金
广西哲学社会科学研究课题(23FTQ005)
广西壮族自治区公安厅专项课题(2023GAQN092)
广西警察学院校级科研项目(2022KYZ17)。
关键词
图自编码器
图卷积网络
标签预测
关系预测
graph autoencoder
Graph Convolutional Network
label prediction
relationship prediction