期刊文献+

基于深度学习网络的近红外人脸表情识别

Near infrared facial expression recognition based on deep learning networks
下载PDF
导出
摘要 近红外人脸表情识别主要依赖图像局部特征,提取特征受到干扰时,人脸表情识别准确率低。因此,设计深度学习网络的新型近红外人脸表情识别方法。依托于图像局部优化保留法重建图像结构信息,得到降维后的近红外人脸图像。应用点分布模型检测出人脸上所有关键点,抽取出人脸表情识别的感兴趣区域,运用深度学习网络架构搭建人脸表情分类识别模型,通过调整识别模型的参数得到人脸表情的识别结果。实验结果表明:所提方法识别结果的Acc平均值达到了0.95,很大程度提升了近红外人脸表情识别准确性。 Near infrared facial expression recognition mainly relies on local features of lazy images.When the extracted features are interfered with,the accuracy of facial expression recognition is low.Therefore,a new near-infrared facial expression recognition method based on deep learning networks is designed.Relying on the local optimization and preservation method of the image to reconstruct the image structure information,the reduced dimensionality near-infrared facial image is obtained.The application point distribution model detects all key points on the face,extracts regions of interest for facial expression recognition,and constructs a facial expression classification and recognition model using a deep learning network architecture.By adjusting the parameters of the recognition model,the recognition results of facial expressions are obtained.The experimental results show that the average Acc value of the proposed method's recognition results reaches 0.95,greatly improving the accuracy of near-infrared facial expression recognition.
作者 罗梦贞 秦鹏 初人杰 LUO Mengzhen;QIN Peng;CHU Renjie(School of Science and Engineering,Guilin University,Guilin Guangxi 541006,China)
出处 《激光杂志》 CAS 北大核心 2024年第5期176-181,共6页 Laser Journal
基金 广西高校中青年教师科研基础能力提升项目(No.2022KY1575)。
关键词 深度学习网络 近红外图像 人脸图像 特征提取 表征函数 表情识别 deep learning network near infrared images facial images feature extraction characterization function expression recognition
  • 相关文献

参考文献18

二级参考文献92

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部