摘要
针对现有辨识方法对用户用电量异常数据映射越限不明显及辨识率较低的问题,提出电力现货市场中用户电量异常数据辨识方法。通过采集用户用电异常数据,对缺失值进行补充和归一化处理,计算当前用户用电量数据和历史用电量间的差异,再建立模型观测用电量与系统状态之间的关系,获取不同时间段内的变化规律。运用非参数密度法统计电量数据,提取日电量特征及加权后的用户特征曲线和用户电量数据的可行矩阵,比较待辨识数据曲线的上限、下限是否在可行范围内,从而完成异常数据的辨识。结果表明,电量异常数据映射至可行域中存在明显超越可行域上限、下限的情况,实验组的异常数据辨识准确率为100%,实现了电力现货市场中对用户电量异常数据的精准辨识。
A method for identifying abnormal user electricity consumption data in the electricity spot market is proposed to address the issues of unclear mapping of abnormal user electricity consumption data and low identification rate using existing identification methods.By collecting abnormal user electricity consumption data,supplementing and normalizing missing values,calculating the dfference between current user electricity consumption data and historical electricity consumption,and then establishing a model to observe the relationship between electricity consumption and system status,obtaining changes in different time periods.Using the non parametric density method to statistically analyze electricity consumption data,extracting daily electricity consumption characteristics,weighted user characteristic curves,and feasible matrices of user electricity consumption data,comparing whether the upper and lower limits of the data curve to be identified are within the feasible range,in order to complete the identification of abnormal data.The results showed that there were significant cases of exceeding the upper and lower limits of the feasible domain when mapping abnormal electricity data to the feasible domain.The experimental group's accuracy in identifying abnormal data was 100%,achieving accurate identification of user abnormal electricity data in the electricity spot market.
作者
何妍妍
赵志扬
程叙鹏
陈奕汝
吴秀英
HE Yanyan;ZHAO Zhiyang;CHENG Xupeng;CHEN Yiru;WU Xiuying(Marketing Service Center,State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou,Zhejiang 310000,China)
出处
《自动化应用》
2024年第10期229-231,共3页
Automation Application
关键词
电力现货市场
用户电量
异常数据
信息采集
辨识模型
electricity spot market
user electricity consumption
abnormal data
information collection
identification model