期刊文献+

基于非均匀分簇的网络多通道数据融合共享系统

Multi⁃channel data fusion and sharing system based on non⁃uniform clustering
下载PDF
导出
摘要 为了避免数据融合共享过程因受到热区的影响而出现汇聚节点和共享数据少的问题,设计基于非均匀分簇的网络多通道数据融合共享系统。在数据融合模块中,依据Grobeis准则预处理数据,将数据全部汇聚到融合池。在数据共享模块中,根据数据库模板间的映射关系,通过统一接口分发多通道数据。通过引入竞争半径实现非均匀分簇,避免数据融合共享过程受到热区影响。针对融合窗口内的两个节点中心的子带数据,通过区分可信和不可信数据,避免冗余数据影响融合结果。将数据汇聚到下一跳簇间路由,即可实现数据共享。实验表明,该系统汇聚节点最大接收量为86×10^(3)个,最大共享数据量为85×10^(3)个,说明该系统能够高效融合和共享多通道数据。 In order to avoid the problem of few sink nodes and shared data due to the impact of hot areas in the process of data fusion and sharing,a multi⁃channel data fusion and sharing system based on non⁃uniform clustering is designed.In the data fusion module,the data is preprocessed according to the Grobeis is criterion,and all the data are gathered into the fusion pool.In the data sharing module,multi⁃channel data is distributed through a unified interface according to the mapping relationship between database templates.By introducing competition radius to realize non⁃uniform clustering,the process of data fusion and sharing is prevented from being affected by the hot zone.For the sub⁃band data of the two node centers in the fusion window,the trusted and untrusted data are distinguished to avoid redundant data affecting the fusion result.data can be shared by aggregating data to the next hop inter cluster routing.The experiment shows that the maximum receiving capacity of the sink node of the system is 86×10^(3),the maximum shared data is 85×10^(3),indicating that the system can efficiently integrate and share multi⁃channel data.
作者 张瑜 崔琳 盛红雷 赵恩来 李明 ZHANG Yu;CUI Lin;SHENG Honglei;ZHAO Enlai;LI Ming(Beijing Sgitg Accenture Information Technology Co.,Ltd.,Beijing 100052,China;Nari Information Communication Technology Co.,Ltd.,Nanjing 210000,China)
出处 《电子设计工程》 2024年第12期187-190,195,共5页 Electronic Design Engineering
关键词 非均匀分簇 网络多通道 数据融合 数据共享 non⁃uniform clustering network multi⁃channel data fusion data sharing
  • 相关文献

参考文献16

二级参考文献153

共引文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部