期刊文献+

基于图卷积网络的交通流预测方法综述

A survey of traffic flow prediction based on graph convolutional networks
下载PDF
导出
摘要 近年来,基于深度学习的交通流预测方法一直是交通流预测领域的研究热点.与传统卷积神经网络不同,适合处理非欧几里得数据的图卷积网络在空间特征建模方面表现出了强大的能力,而反映路网空间特征的拓扑图、距离图、流量相似图等正是典型的非欧几里得数据.因此,基于图卷积网络及其变体的交通流预测方法成为交通流预测领域的一个研究热点,并取得了很多有吸引力的研究结果.本文对近年来基于图卷积网络的交通流预测模型进行了分类和总结.首先,从图卷积网络的基本定义出发,结合空域图卷积和谱域图卷积的定义详述了图卷积的基本原理.其次,根据预测模型的网络结构特点,将基于图卷积网络的交通流预测模型分为“组合型”和“改进型”两大类,并对其中最具代表性的模型结构进行了详细分析和讨论.此外,对交通流预测领域中常用于模型性能对比的典型数据集进行了综述,并以其中一个真实数据集为例开展仿真测试,展示了4个基于图卷积网络交通流预测模型的预测性能.最后,基于当前的研究现状和发展趋势,对基于图卷积网络的交通流预测方法研究领域中未来的研究热点和难点进行了开放性的讨论和展望. In recent years,deep learning has been a hot research topic in traffic flow prediction.Graph convolutional networks outperform traditional convolutional neural networks in spatial feature modeling,in view of their powerful capabilities in processing non-Euclidean data such as topological map,distance map and flow similari-ty map.Therefore,graph convolutional network and its variants have become a research hotspot in traffic flow predic-tion,and many attractive research results have been obtained.This article classifies and summarizes traffic flow pre-diction models based on graph convolutional networks in recent years.First,the graph convolution is elaborated by combining the definitions of spatial convolution and spectral convolution.Second,in view of the network structure of the prediction model,the graph convolutional network based traffic flow prediction models are divided into two major categories of combined type and improved type,each of which are analyzed and discussed in detail with representa-tive model structures.In addition,typical datasets commonly used in traffic flow prediction for model performance comparison are reviewed,and a simulation test is conducted using one real dataset to demonstrate the prediction per-formance of four traffic flow prediction models based on graph convolutional networks.Finally,the future research hotspots and challenges in traffic flow prediction based on graph convolutional networks are prospected.
作者 叶宝林 戴本岙 张鸣剑 高慧敏 吴维敏 YE Baolin;DAI Benao;ZHANG Mingjian;GAO Huimin;WU Weimin(School of Information Science and Engineering,Zhejiang Sci-Tech University,Hangzhou 310018,China;College of Information Science and Engineering,Jiaxing University,Jiaxing 314001,China;Institute of Cyber-Systems and Control,Zhejiang University,Hangzhou 310027,China)
出处 《南京信息工程大学学报》 CAS 北大核心 2024年第3期291-310,共20页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 浙江省自然科学基金(LTGS23F030002) 嘉兴市应用性基础研究项目(2023AY11034) 浙江省“尖兵”“领雁”研发攻关计划(2023C01174) 国家自然科学基金(61603154) 工业控制技术国家重点实验室开放课题(ICT2022B52)。
关键词 深度学习 交通拥堵 图卷积网络 交通流预测 deep learning traffic congestion graph convolutional network traffic flow prediction
  • 相关文献

参考文献8

二级参考文献63

  • 1Gore A. The digital earth: Understanding our planet in the 21st century[J]. Photogrammetric Engineering and Remote Sensing, 1999, 65(5): 528.
  • 2Palmisano S. A smarter planet: The next leadership agenda[R]. New York: IBM, 2008.
  • 3Department for Culture, Media and Sport, Department for Business, Innovation and Skills. Digital Britain final report[R]. London: Office of Public Sector Information, 2009.
  • 4郭慧鹏. 智慧城市:应用日渐丰富多彩[N]. 中国信息化周报, 2013-12-30028.
  • 5Frankel F, Reid R. Big data: Distilling meaning from data[J]. Nature, 2008, 455(7209): 30-30.
  • 6Los W, Wood J. Dealing with data: Upgrading infrastructure[J]. Science, 2011, 331(6024): 1515-1516.
  • 7Ahas R, Aasa A, Silm S, et al. Daily rhythms of suburban commuters’movements in the tallinn metropolitan area: Case study with mobile positioning data[J]. Transportation Research Part C: Emerging Technologies, 2010, 18(1): 45-54.
  • 8Gentili M, Mirchandani P. Locating sensors on traffic networks: Models, challenges and research opportunities[J]. Transportation Research Part C: Emerging Technologies, 2012, 24: 227-255.
  • 9Bachmann C, Abdulhai B, Roorda M J, et al. A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling[J]. Transportation Research Part C: Emerging Technologies, 2013, 26: 33-48.
  • 10Zikopoupos P C, Eaton C, de Roos D, et al. Understanding and streaming data[R]. McGraw- Hill Companies, 2012.

共引文献188

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部