期刊文献+

跨模态检索研究方法综述 被引量:1

A Review of Research Methods for Cross-Modal Retrieval
下载PDF
导出
摘要 跨模态检索是多模态学习中的一个关键领域,其主要目标是寻找不同模态之间的语义关系,使其能在不同模态之间检索到具有相似语义特征的样本。随着深度神经网络发展,跨模态检索受到许多学者的关注,输入—输出查询的模态不同,其一致性比较仍然是一个难点。为此,首先介绍跨模态检索的相关概念,对基于实值表示、二进制表示等跨模态检索的常用方法进行总结,然后重点阐述深度学习模型在跨模态检索上的应用、跨模态检索主要数据集和评价指标,最后提出该领域的未来发展方向与现存主要难点与挑战,以期为跨模态检索的研究人员提供参考与借鉴。 Cross modal retrieval is a key field in multimodal learning,whose main goal is to find semantic relationships between different modalities,so that it can retrieve samples with similar semantic features between different modalities.With the development of deep neural networks,cross modal retrieval has attracted the attention of many scholars.The consistency comparison of input-output queries remains a challenge due to their different modalities.To this end,first introduce the relevant concepts of cross modal retrieval,summarize the commonly used methods of cross modal retrieval based on real value representation and binary representation,and then focus on the application of deep learning models in cross modal retrieval,the main datasets and evaluation indicators of cross modal retrieval.Finally,propose the future development direction and existing main difficulties and challenges in this field,in order to provide reference and guidance for researchers in cross modal retrieval.
作者 侯嘉润 施水才 王洪俊 HOU Jiarun;SHI Shuicai;WANG Hongjun(School of Computer,Beijing Information Science and Technology University,Beijing 100101,China;TRS Information Technology Co.,Ltd,Beijing 100096,China)
出处 《软件导刊》 2024年第5期198-204,共7页 Software Guide
关键词 跨模态检索 深度学习 实值表示 二进制表示 cross-modal retrieval deep learning real value representation binary representation
  • 相关文献

参考文献7

二级参考文献32

共引文献91

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部