期刊文献+

A Novel Density-Based Spatial Clustering of Application with Noise Method for Data Clustering

原文传递
导出
摘要 The traditional methods are easy to generate a large number of fake samples or data loss when classifying unbalanced data.Therefore,this paper proposes a novel DBSCAN(density-based spatial clustering of application with noise)for data clustering.The density-based DBSCAN clustering decomposition algorithm is applied to most classes of unbalanced data sets,which reduces the advantage of most class samples without data loss.The algorithm uses different distance measurements for disordered and ordered classification data,and assigns corresponding weights with average entropy.The experimental results show that the new algorithm has better clustering effect than other advanced clustering algorithms on both artificial and real data sets.
作者 Yuchang Si
机构地区 Software College
出处 《IJLAI Transactions on Science and Engineering》 2024年第2期51-58,共8页 IJLAI科学与工程学报汇刊(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部