期刊文献+

基于多源遥感数据的大范围仿真三维地形重建

Three-dimensional terrain reconstruction of large-scale simulation based on multi-source remote sensing data
下载PDF
导出
摘要 文章聚焦面向虚拟仿真应用的城市级仿真三维地形重建应用,针对基于遥感数据的十米级分辨率大范围基础三维模型快速重建方法进行研究。重建方法采用卫星数字高程模型完成三维模型的白模重建,引入多光谱遥感数据完成模型贴图生成,利用多种遥感参数进行模型细节的优化。结果表明,生成的三维地形模型可在虚拟仿真软件中渲染显示8000 km^(2)城市仿真三维地形,同时能够满足虚拟仿真应用中对地形细节和真实性的要求。 This paper focuses on the application of city-level 3D terrain reconstruction for virtual simulation applications,and studies the rapid reconstruction method of large-scale basic 3D model with 10-meter resolution based on remote sensing data.The reconstruction method uses satellite digital elevation model to complete the white model reconstruction of three-dimensional model,introduces multi-spectral remote sensing data to complete the model mapping generation,and optimizes the model details by using various remote sensing parameters.The results show that the 3D terrain model can render and display 8000 km^(2) urban 3D terrain in virtual simulation software,and can meet the requirements of terrain details and authenticity in virtual simulation applications.
作者 朱腾 陈友滨 ZHU Teng;CHEN You-bin
出处 《智能城市》 2024年第5期7-9,共3页 Intelligent City
基金 广东省普通高校青年创新人才类项目(2019GKQNCX020) 广东工贸职业技术学院高层次人才专项(2021-gc-07)。
关键词 虚拟仿真 三维地形重建 卫星遥感 virtual simulation three-dimensional terrain reconstruction satellite remote sensing
  • 相关文献

参考文献5

二级参考文献37

  • 1陈晓铮,李震霄.一种基于表面积比例的地形纹理贴图算法[J].计算机仿真,2007,24(8):174-177. 被引量:3
  • 2STRECHA C,FRANSENS R,VAN GOOL L.Combined Depth and Outlier Estimation in Multi-view Stereo[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,2006:2394-2401.
  • 3GARGALLO P,STURM P.Bayesian 3D Modeling from Images Using Multiple Depth Maps[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos,2005:885-891.
  • 4CAMPBELL N D F,VOGIATZIS G,HERNNDEZ C,et al.Using Multiple Hypotheses to Improve Depth-maps for Multiview Stereo[M].Springer Berlin Heidelberg,2008:766-779.
  • 5FURUKAWA Y,PONCE J.Accurate,Dense,and Robust Multiview Stereopsis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(8):1362-1376.
  • 6SEITZ S M,CURLESS B,DIEBEL J,et al.A Comparison and Evaluation of Multi-view Stereo Reconstruction Algorithms[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,2006:519-528.
  • 7FURUKAWA Y,CURLESS B,SEITZ S M,et al.Clustering Views for Multi-view Stereo[C]∥Proceedings from the IEEE Conference on Computer Vision and Pattern Recognition.San Francisco,2010:1434-1441.
  • 8AGARWAL S,FURUKAWA Y,SNAVELY N,et al.Building Rome in a Day[J].Communications of the ACM,2011,54(10):105-112.
  • 9WU C.Towards Linear-time Incremental Structure from Motion[C]∥IEEE International Conference on 3DTV-Conference.Washington,2013:127-134.
  • 10FISCHLER M A,BOLLES R C.Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J].Communications of the ACM,1981,24(6):381-395.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部