期刊文献+

基于自适应网络拓扑和日志聚类的故障定界方法研究

Research on fault bounding method based on adaptive network topology and log clustering
下载PDF
导出
摘要 传统的异常检测方法采用不定时巡检和用户反馈等被动方式发现问题,存在效率低、无法主动发现故障的问题。本文提出了一种基于自适应网络拓扑和日志聚类的故障定界方法。首先利用交换机ARP表和主机流量关系构建网络拓扑,再对系统日志进行结构化和聚类处理,最后结合网络拓扑和聚类结果快速定位异常范围,保证异常检测高效及全面。经生产实践表明,本文提出的故障定界方法能快速定位问题主机。 Traditional anomaly detection methods use passive methods such as irregular patrols and user feedback to detect problems,which have low efficiency and cannot proactively detect faults.This paper proposes a fault bounding method based on adaptive network topology and log clustering.Firstly,use the ARP table of the switch and the host traffic relationship to construct a network topology,then structure and cluster the system logs,finally,combine network topology and cluster results to quickly locate the anomaly range,ensure efficient and comprehensive anomaly detection.Production practice shows that the fault boundary method proposed can quickly locate the problem host.
作者 王锐 WANG Rui(China Mobile Group Guangdong Co.,Ltd.,Guangzhou 510623,China)
出处 《电信工程技术与标准化》 2024年第6期29-32,共4页 Telecom Engineering Technics and Standardization
关键词 异常检测 日志 网络拓扑 聚类 anomaly detection log network topology clustering
  • 相关文献

参考文献8

二级参考文献70

  • 1李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 2Koreisha S, Pukkila T. A generalized least squares approach for estimation of autoregressive moving average models [ J]. Journal of Time Seriesnalysis,1999( 11) : 139-151.
  • 3曹晓梅,韩志杰,陈贵海.基于流量预测的传感器网络拒绝服务攻击检测方案[J].计算机学报,2007,30(10):1798-1805. 被引量:33
  • 4Coverity. Coverity Scan: 2012 Open Source Report. 2013. http://www.coverity.com/.
  • 5Yuan D, Park S, Huang P, Liu Y, Lee MM, Tang X, Zhou Y, Savage S. Be conservative: enhancing failure diagnosis with proactive logging. In: Proe. of the 10th Syrup. on Operating Systems Design and Implementation (OSDI). 2012. 293-306.
  • 6Yuan D, Park S, Zhou Y. Characterizing logging practices in open-source software. In: Proc. of the 2012 Int'l Conf. on Software Engineering. 2012. 102-112. [doi: 10.1109/ICSE.2012.6227202].
  • 7Kavulya SP, Joshi K, Di Giandomenico F, Narasimhan P. Failure Diagnosis of Complex Systems, Resilience Assessment and Evaluation of Computing Systems. Springer-Verlag, 2012. 239-261. [doi: 10.1007/978-3-642-29032-9].
  • 8Fu Q, Zhu J, Hu W, Lou JG, Ding R, Lin Q, Zhang D, Xie T. Where do developers log? An empirical study on logging practices in industry. In: Proc. of the 36th Int'l Conf. on Software Engineering. 2014.24-33. [doi: 10.1145/2591062.2591175 ].
  • 9Jiang W, Hu C, Pasupathy S, Kanevsky A, Li Z, Zhou Y. Understanding Customer Problem Troubleshooting from Storage System Logs. In: Proc. of the 7th USENIX Conf. on File and Storage Technologies (FAST). 2009.43-56.
  • 10Prewett JE. Analyzing cluster log files using logsurfer. In: Proc. of the 4th Annual Conf. on Linux Clusters. 2003.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部