期刊文献+

基于深度学习的直播弹幕情感多分类研究

Research on Multi classification of Live Streaming Bullet Screen Emotions Based on Deep Learning
下载PDF
导出
摘要 在网络直播场景下为提高弹幕分析的准确性与高效客观性,文章提出了一种结合MacBERT预训练语言模型与BILSTM-CNN模型的弹幕情感多分类模型MacBERT-BILSTM-CNN,将情感按照乐、好、怒、愁、惊、恶和惧7种情感维度进行分类;同时考虑到颜文字和表情等情感符号所蕴含的内在信息对弹幕情感分析的影响,进行了颜文字和表情符号的替换。经过对比实验,MacBERT-BILSTM-CNN模型在相同数据集上的评价指标与CNN、BILSTM-CNN和MacBERT模型相比都有不同程度的提升,表明了该模型在弹幕情感多分类任务中具有更好的效果;替换情感符号后相比与原始数据集的评价指标有一定提高,证明了充分考虑情感符号蕴含的内在信息能提升弹幕情感倾向判断的准确性。 In order to improve the accuracy and efficiency of barrage analysis in live streaming scenarios,this paper proposes a multi classification model for barrage emotions,MacBERT-BIL-STM-CNN,which combines MacBERT pre trained language model and BILSTM-CNN model.Emotions are classified into seven cmotional dimensions:joy,good,anger,sorrow,shock,cvil,and fear;At the same time,considering the influence of the inherent information contained in c-motional symbols such as facial expressions and emoticons on bullet screen sentiment analysis,the replacement of facial expressions and emoticons was carried out.After comparative experi-ments,the evaluation metrics of the MacBERT-BILSTM-CNN model have been improved to varying degrces compared to CNN,BILSTM-CNN,and MacBERT models on the same dataset,indicating that the model has better performance in bullet emotion multi classification tasks;Compared with the original dataset,there is a ccrtain improvement in the cvaluation indicators after replacing emotional symbols,which proves that fully considering the intrinsic information contained in emotional symbols can improve the accuracy of barrage emotion tendency judg-ment.
作者 焦科元 JIAO Keyuan(College of Computer and Infomation Science of China Three Gorges University,Yichang 443000,China)
出处 《长江信息通信》 2024年第5期65-69,共5页 Changjiang Information & Communications
关键词 弹幕 情感多分类 预训练语言模型 颜文字 表情符号 Barrage Multi classification of cmotions Pre trained language model Yan script Emoticons
  • 相关文献

参考文献5

二级参考文献43

  • 1徐琳宏,林鸿飞.基于语义特征和本体的语篇情感计算[J].计算机研究与发展,2007,44(z2):356-360. 被引量:13
  • 2洪铭材,张阔,唐杰,李涓子.基于条件随机场(CRFs)的中文词性标注方法[J].计算机科学,2006,33(10):148-151. 被引量:56
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 4Kim S M, Hovy E. Determining the sentiment of opinions//Proceedings of the 20th International Conference on CL. Morristown: ACL, 2004:1367 - 1373.
  • 5Hu Minqing, Liu Bing. Mining and summarizing customer reviews//Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2004:168-177.
  • 6Pang B, Lee L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts//Proceedings of the ACL. Morristown: ACL, 2004:271 -278.
  • 7Yu H, Hatzivassiloglou V. Towards answering opinion questions: Separating facts from opinions and Identifying the polarity of opinion sentences//Proceedings of the Conference on Empirical Methods in NLP. Morristown: ACL, 2003 : 129 - 136.
  • 8Hatzivassiloglou V, Wiebe J. Effects of adjective orientation and gradability on sentence subjectivity//DFKI. Proceedings of 18th International Conference on CL. Morristown : ACL, 2000 : 299 - 305.
  • 9Nasukawa T, Yi J. Sentiment analysis: Capturing favorability using natural language processing//Proceedings of the International Conference on Knowledge Capture. New York : ACM, 2003 : 70 -77.
  • 10Pang Bo, Lee L. Thumbs up? Sentiment classification using machine learning techniques//Proceedings of the Conference on Empirical Methods in NLP. Morristown: ACL, 2002:79 -86.

共引文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部