摘要
文章采用大数据、物联网及水质模型等技术,设计了一种水环境保护监管系统。该系统通过数据挖掘和机器学习算法,从海量的数据中提取有用的信息,实现水环境状况综合研判、水环境风险预测预警、水环境污染追因溯源以及水质改善政策成效评估等功能,分析结果以可视化的方式呈现,便于管理部门理解和决策。通过实践应用,可以有效说清现状、摸清底数、分清外源影响和内生污染原因,为水环境管理部门科学治污、精准治污提供可靠的数据分析结果和技术支持,提高水环境管理的智慧化水平。
Using big data,Internet of Things and water quality model technology to design a water environment protection supervision system,through data mining and machine learning algorithms,the system can extract useful information from massive data,and realize functions such as comprehensive research and judgment of water environmental conditions,water environmental risk prediction and early warning,water environmental pollution tracing,water quality improvement policy effectiveness evaluation,etc.The analysis results were presented in a visual way,which was easy for management departments to understand and make decisions.Through practical application,it could effectively clarify the current situation,find out the bottom number,distinguish external influences and endogenous pollution causes,provide reliable data analysis results and technical support for water environment management departments to scientifically and accurately control pollution,and improve the wisdom level of water environment management.
作者
曲凯
阴璐璐
周洁
QU Kai;YIN Lulu;ZHOU Jie(Shandong Provincial Eco-environment Monitoring Center,Jinan 250101,China)
出处
《环境保护科学》
CAS
2024年第3期48-52,共5页
Environmental Protection Science
基金
山东省自然科学基金项目重大基础研究项目(ZR2020ZD21)。
关键词
大数据
水环境
水质模型
系统设计
big data
water environment
water quality model
system design