摘要
厄尔尼诺-南方涛动(ENSO)是发生在热带太平洋年际时间尺度的海-气相互作用的异常现象,并由Nino3.4指数表征其发生情况;除此之外,ENSO与众多极端气候事件密切相关。因此,有效的ENSO预测对于预防极端气候事件和深入研究全球气候变化具有重要意义。然而,目前基于深度学习的ENSO预测大多数是预测一个指数或者单一变量,对于模拟多气候要素下的ENSO预测研究较少。通过提出一种利用多气候变量的ENSO预测模型——MEPM模型,其中包括多变量信息提取模块(MIEM)和时空融合模块(STFM),捕获不同气候变量在时空上的相互依赖性,进而提高ENSO预测的准确性。选取了纬向风应力异常(τ_(x))、经向风应力异常(τ_(y))、海表温度异常(SSTA)和海表下150 m温度异常(SSTA150)4个变量的距平值进行ENSO预测。结果表明:MEPM模型在提前11个月的Nino3.4指数相关技巧上分别比北美多模型集合中的动力预报系统CanCM4、CCSM3和GFDL-aer04高10%、20%和14%。此外,MEPM模型在中期Nino3.4指数相关技巧上显著优于其他深度学习模型,并可提供长达17个月的有效预测。
The El Nino-Southern Oscillation(ENSO)is an anomaly of air-sea interaction on an interannual time scale in the tropical Pacific Ocean,and its occurrence is characterized by the Ni o3.4 index.In addition,ENSO is closely related to many extreme climatic events.Therefore,effective ENSO prediction is of great significance for preventing extreme climate events and in-depth study of global climate change.However,most ENSO predictions based on deep learning predict an index or a single variable,and there are few research on the space-time evolution of ENSO under the simulation of multi-climate factors.MEPM,a multivariate ENSO prediction model,was presented.These include multivariate information extraction module(MIEM)and spatial-temporal fusion module(STFM),to capture the interdependencies of different climate elements in time and space,thereby improving the accuracy of ENSO prediction.The anomalies of latitude wind stress anomaly(τ_(x)),longitude wind stress anomaly(τ_(y)),sea surface temperature anomaly(SSTA)and 150 m below sea surface temperature anomaly(SSTA150)were selected,and sufficient experiments were carried out.The results show that MEPM is 10%,20%and 14%higher,respectively,than dynamic forecasting systems CanCM4,CCSM3,and GFDL-aer04 in North American multi-model ensemble on the average of Nino3.4 index-related techniques 11 months in advance.In addition,MEPM significantly outperforms other deep learning models on Nino3.4 index-related techniques over the medium term and provides valid predictions up to 17 months.
作者
方巍
张霄智
齐媚涵
FANG Wei;ZHANG Xiao-zhi;QI Mei-han(School of Computer Science,Nanjing University of Information Science&Technology,Nanjing 210044,Jiangsu,China;Engineering Research Center of Digital Forensics of Ministry of Education,Nanjing University of Information Science&Technology,Nanjing 210044,Jiangsu,China;Key Laboratory of Transportation Meteorology of China Meteorological Administration,Nanjing Joint Institute for Atmospheric Sciences,Nanjing 210041,Jiangsu,China;China Meteorological Administration Basin Heavy Rainfall Key Laboratory/Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research,Institute of Heavy Rain,China Meteorological Administration,Wuhan 430205,Hubei,China;Jiangsu Provincial Key Laboratory for Computer Information Processing Technology,Soochow University,Suzhou 215006,Jiangsu,China)
出处
《地球科学与环境学报》
CAS
北大核心
2024年第3期285-297,共13页
Journal of Earth Sciences and Environment
基金
国家自然科学基金项目(42075007)
江苏省计算机信息处理技术重点实验室开放研究基金项目(KJS2275)
中国气象局交通气象重点开放实验室开放研究基金项目(BJG202306)
中国气象局流域强降水重点开放实验室开放研究基金项目(2023BHR-Y14)
江苏省研究生科研与实践创新计划项目(KYCX23_1388)。