摘要
针对圆周上时间周期反应扩散方程,给出耗散性假设,证明了该方程存在全局吸引子.首先,建立合适的分数幂空间,应用算子半群的相关理论证明该方程在此分数幂空间中存在全局解.其次,基于全局解定义Poincaré映射,生成离散半流.最终由离散半流的紧性和点耗散性得到全局吸引子的存在性.
For a time-periodic reaction-diffusion equation on the circle,the existence of a global attractor was proved under dissipative assumptions.Firstly,a suitable fractional power space was established in this paper,and by using the operator semigroup theory it can be proved that the equation has a global solution in the space.Next,based on the global solution,the Poincarémap was defined,which can generate a discrete semiflow.Finally,the existence of the global attractor was obtained from the compactness and point dissipativity of the discrete semiflow.
作者
苏婷婷
周盾
邱志鹏
SU Ting-ting;ZHOU Dun;QIU Zhi-peng(School of Mathematics and Statistics,Nanjing University of Science and Technology,Nanjing Jiangsu 210094,China;Center for Basic Teaching and Experiment,Nanjing University of Science and Technology,Wuxi Jiangsu 214443,China)
出处
《淮阴师范学院学报(自然科学版)》
CAS
2024年第2期95-99,共5页
Journal of Huaiyin Teachers College;Natural Science Edition
基金
国家自然科学基金项目(12071217)。
关键词
反应扩散方程
周期系统
全局吸引子
分数幂空间
reaction-diffusion equation
periodic system
global attractor
fractional power space