期刊文献+

非能动余热排出系统过冷沸腾传热特性研究

Study on Heat Transfer Characteristics of Sub-cooled Boiling in Passive Residual Heat Removal System
原文传递
导出
摘要 小型核电厂非能动余热排出系统(PRS)冷却水过冷沸腾会引起流动不稳定问题,从而影响反应堆安全性。通过静态传热分析,获取流动状态下避免净蒸汽产生的传热管外壁温度限值,并通过提高冷却水出口管出口位置标高和冷却水管内径的方法提高PRS系统冷却水的自然循环流量。研究结果表明,改进方案实施后,冷却水自然循环能力提升,系统排热能力有所提升,可以有效降低冷却水沸腾强度,避免产生过多蒸汽,使PRS系统稳定运行。 The sub-cooled boiling in the passive residual heat removal system(PRS)of miniaturized nuclear power plant can cause unstable flow,which will affect the safety of the reactor.Through static heat transfer analysis,the temperature limit of the outer wall of the heat transfer tube to avoid net steam generation in the flowing state is obtained,and the natural circulating flow of cooling water in PRS system is improved by increasing the outlet position elevation of the cooling water outlet pipe and the inner diameter of the cooling water pipe.The research results show that after the implementation of the improvement scheme,the natural circulation capacity of cooling water and the heat removal capacity of the system are improved,which can effectively reduce the boiling intensity of cooling water,avoid excessive steam generation and make the PRS system run stably.
作者 汪宇 卢庆 陈志辉 郝承明 赵京 严思伟 Wang Yu;Lu Qing;Chen Zhihui;Hao Chengming;Zhao Jing;Yan Siwei(Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China,Chengdu,610213,China)
出处 《核动力工程》 EI CAS CSCD 北大核心 2024年第3期258-262,共5页 Nuclear Power Engineering
关键词 非能动余热排出系统(PRS) 过冷沸腾 静态传热分析 自然循环 Passive residual heat removal system(PRS) Sub-cooled boiling Static heat transfer analysis Natural circulation
  • 相关文献

参考文献2

二级参考文献15

  • 1苏光辉,张金玲,郭玉君秋穗正,喻真烷,贾斗南.海洋条件对船用核动力堆余热排出系统特性的影响[J].原子能科学技术,1996,30(6):487-491. 被引量:20
  • 2Kroeger P G, Zuber N. An Analysis of the Effects of Various Parameters on the Average Void Fractions in Subcooled Boiling[J]. Int. J. Heat Mass Transfer, 1968,11:211-233.
  • 3Lin-wen H, Chin P. Predictions of Void Fraction in Convective Subcooled Boiling Channels Using a One-Dimensional Two-Fluid Model[J]. Transactions of the ASME Journal of Heat Transfer, 1995, 117: 799.-803.
  • 4Levy S. Forced Convection Subcooled Boiing-Prediction of Vapor Volumetric Fraction[J]. Int. J. Heat MassTransfer, 1967, 10: 951-965.
  • 5Saha P, Zuber N. Point of Net Vapor Genezation and Vapor Void Fraction in Subcooled Boiling[C]. Proc. of the 5th International Heat Transfer Conference. Tokyo,1974, Paper B4. 7.
  • 6Lee S C, Dorra H, Bankoff S G. A Critical Review of Predictive Models for the Onset of Significant. Void in Forced Convection Subcooled Boiling[C]. Presented at ASME Winter Ann. Mtg.
  • 7Chang H O, Chapman J C. Two-Phase Flow Ingtabilityfor Low-Flow Boiling in Vertical Heated thin Rectangular Channels[J].Nuclear Technology, 1996,113:327 - 337.
  • 8Ruichang Y, Yanwu W, Hong T, Rong S et al. Onset of Nucleate Boiling Point of Net Vapor Generation and Void Fraction for Low-Flow Natural Circulation with Subcooling Boiling[C]. Proceedings of the 4th lntertional Conference on Multiphase Flow New Orleans,USA, 2001. Paper No. 13-(CD-Rom).
  • 9Dix G E. Vapor Void Fraction For Forced Convection with Subcoolcd Boiling at Low Flow Rates[D]. Ph.D.Thesis, Univ. Of California, Berkeley, 1971.
  • 10Rouhani S Z, Axelsson E. Calculation of Void Volmne Fraction in the Subcooled and Quality Boiling Region[J].Int. J. Heat Mass Transfer. 1970, 13: 383-393

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部