摘要
基于机器视觉的PCB缺陷检测系统易于因图像模糊等失真问题,影响后续缺陷检测的准确性。针对此问题建立了相关模糊图像数据集,并提出一种空频结合的无参考图像质量实时评价方法。方法提取图像的最大局部变化信息作为空域信息。随后对空域信息进行一级小波分解,求出高频分量中水平方向的小波系数,随后利用处理后的小波系数的最大值,得到客观评价值。同时,建立PCB模糊图像数据集(PBID)用于算法的验证。大量实验结果表明,与其它无参考图像质量评价方法相比,该方法与主观评价值具有较高的一致性,在PBID数据集上的皮尔逊线性相关系数(PLCC)达到了0.9835,且运行速度快,仅为每帧0.1302 s,适合对实时性要求较高的应用场合。
The accuracy of PCB defect detection system based on machine vision is easily affected by image blur and other distortion problems.Aiming at this problem,this paper proposes a no-reference image quality assessment algorithm based on time-frequency combination.The image information in spatial domain is extracted by maximum local variation.Afterwards,the horizontal wavelet coefficients in high-frequency components are obtained by one-scale wavelet.Meanwhile,the objective evaluation value is computed by the maximum value of processed wavelet coefficients.We also established a PCB blurred image database(PBID).A large number of experimental results show that,compared with other no-reference image quality assessment methods,the proposed algorithm has higher correlation with subjective evaluation value.The Pearson linear correlation coefficient(PLCC)on PBID database is 0.9835.The run-time of proposed method is only 0.1302 s per frame.The proposed method has the advantage of fast running speed,so it is suitable for applications with high real-time requirements.
作者
林丽
李诗云
林碧芸
章江超
郑文斌
王健华
陈健
LIN Li;LI Shiyun;LIN Biyun;ZHANG Jiangchao;ZHENG Wenbin;WANG Jianhua;CHEN Jian(School of Electronic,Electrical and Physics,Fujian University of Technology,Fuzhou,Fujian 350118,China;China Telecom Corporation Limited Sanming Branch,Sanming,Fujian 365001,China)
出处
《闽江学院学报》
2024年第2期69-78,共10页
Journal of Minjiang University
基金
福建省自然科学基金项目(2023J01953)
福建省空间信息感知与智能处理重点实验室(阳光学院)开发基金(FKLSIPIP1005)
福建工程学院本科教学改革研究项目(2022JG014)
福建理工大学大学生创新创业训练计划项目(S202310388064)
福建省中青年教师教育科研项目(JT180347)。
关键词
模糊图像
无参考
图像质量评价
局部最大变化
小波分解
blurred image
no-reference
image quality assessment
maximum local variation
wavelet decomposition