期刊文献+

应用于PCB缺陷检测系统的图像质量评价法

Image Quality Assessment Method Applied to PCB Defect Detection System
下载PDF
导出
摘要 基于机器视觉的PCB缺陷检测系统易于因图像模糊等失真问题,影响后续缺陷检测的准确性。针对此问题建立了相关模糊图像数据集,并提出一种空频结合的无参考图像质量实时评价方法。方法提取图像的最大局部变化信息作为空域信息。随后对空域信息进行一级小波分解,求出高频分量中水平方向的小波系数,随后利用处理后的小波系数的最大值,得到客观评价值。同时,建立PCB模糊图像数据集(PBID)用于算法的验证。大量实验结果表明,与其它无参考图像质量评价方法相比,该方法与主观评价值具有较高的一致性,在PBID数据集上的皮尔逊线性相关系数(PLCC)达到了0.9835,且运行速度快,仅为每帧0.1302 s,适合对实时性要求较高的应用场合。 The accuracy of PCB defect detection system based on machine vision is easily affected by image blur and other distortion problems.Aiming at this problem,this paper proposes a no-reference image quality assessment algorithm based on time-frequency combination.The image information in spatial domain is extracted by maximum local variation.Afterwards,the horizontal wavelet coefficients in high-frequency components are obtained by one-scale wavelet.Meanwhile,the objective evaluation value is computed by the maximum value of processed wavelet coefficients.We also established a PCB blurred image database(PBID).A large number of experimental results show that,compared with other no-reference image quality assessment methods,the proposed algorithm has higher correlation with subjective evaluation value.The Pearson linear correlation coefficient(PLCC)on PBID database is 0.9835.The run-time of proposed method is only 0.1302 s per frame.The proposed method has the advantage of fast running speed,so it is suitable for applications with high real-time requirements.
作者 林丽 李诗云 林碧芸 章江超 郑文斌 王健华 陈健 LIN Li;LI Shiyun;LIN Biyun;ZHANG Jiangchao;ZHENG Wenbin;WANG Jianhua;CHEN Jian(School of Electronic,Electrical and Physics,Fujian University of Technology,Fuzhou,Fujian 350118,China;China Telecom Corporation Limited Sanming Branch,Sanming,Fujian 365001,China)
出处 《闽江学院学报》 2024年第2期69-78,共10页 Journal of Minjiang University
基金 福建省自然科学基金项目(2023J01953) 福建省空间信息感知与智能处理重点实验室(阳光学院)开发基金(FKLSIPIP1005) 福建工程学院本科教学改革研究项目(2022JG014) 福建理工大学大学生创新创业训练计划项目(S202310388064) 福建省中青年教师教育科研项目(JT180347)。
关键词 模糊图像 无参考 图像质量评价 局部最大变化 小波分解 blurred image no-reference image quality assessment maximum local variation wavelet decomposition
  • 相关文献

参考文献11

二级参考文献171

  • 1陈文志,张凤燕,张然,李超.基于电致发光成像的太阳能电池缺陷检测[J].发光学报,2013,34(8):1028-1034. 被引量:15
  • 2赵剡,宗云花,张世军,杨秋英.气动光学效应降晰函数辨识与图像复原[J].兵工学报,2005,26(2):188-191. 被引量:6
  • 3章玲,蒋建国,齐美彬.一种微分与积分投影相结合的眼睛定位方法[J].合肥工业大学学报(自然科学版),2006,29(2):182-185. 被引量:13
  • 4Jean-Bernard Martens,Lydia Meesters. Image dissimilarity[J]. Signal Process, 1998,70(3) : 155-176.
  • 5WANG Zhou,Bovik A C. Mean squared error:Love it or leave it? - A new look at signal fidelity measures[J]. IEEE Signal Processing Magazine, 2009,26 ( 1 ) :98-117.
  • 6Wang Zhou,Bovik A C,Sheikh Hamid R,etal. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13 ( 4 ) : 600-612.
  • 7Salvador Gabarda, Gabriel Cristobal. Blind image quality assessment through anisotropy[J]. Optical Society of America, 2007,24(12) :42-51.
  • 8ZHOU Jing-chao,XlAO Bai-hua,LI Qiu-dan. A no reference image quality assessment method for JPEG2000A]. IEEE International Joint Conference on Neural Networks[C]. Hong Kong, June,2008. 863-868.
  • 9Parvez Sazzad Z M, Kawayoke Y, Horita Y. No reference image quality assessment for JPEG2000 based on spatial features[J]. Signal Processing: Image Communication, 2008,23 ( 4 ) : 257- 268.
  • 10Toma' s Brandao, Maria Paula Queluz. No-reference image quality assessment based on DCT domain statistics[J]. Signal Processing, 2008,88(1 ) : 822-833.

共引文献237

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部