期刊文献+

基于不确定知识图谱嵌入的多关系近似推理模型

Multi-relation approximate reasoning model based on uncertain knowledge graph embedding
下载PDF
导出
摘要 针对大规模知识图谱(KG)的不确定性嵌入模型中无法对多种逻辑关系进行近似推理的问题,提出一种基于不确定KG嵌入(UKGE)的多关系近似推理模型UDConEx(Uncertainty DistMult(Distance Multiplicative) and complex Convolution Embedding)。首先,UDConEx结合DistMult和ComplEx(Complex Embedding)模型的特点,使得UDConEx具有推理对称与非对称关系的能力;其次,UDConEx采用卷积神经网络(CNN)捕获不确定性KG中的交互信息,使它具有推理逆关系和传递关系的能力;最后,UDConEx利用神经网络对KG的不确定信息进行置信度学习,在UKGE空间中可以进行近似推理。在CN15k、NL27k和PPI5k这3个公开数据集上的实验结果表明,相较于MUKGE(Multiplex UKGE)模型,UDConEx在CN15k、NL27k和PPI5k的置信度预测任务中平均绝对误差(MAE)分别降低了6.3%,30.1%和44.9%;在关系事实排名任务中,基于线性的归一化折损累计增益(NDCG)在CN15k和NL27k数据集中分别提升了5.8%和2.6%;在多关系近似推理任务中验证了UDConEx具有多种逻辑关系的近似推理能力。UDConEx弥补了传统嵌入模型无法进行置信度预测的不足,实现了对多种逻辑关系的近似推理,具有更精确、具有可解释性的不确定性知识图谱推理能力。 Because the uncertain embedding model of large-scale Knowledge Graph(KG)can not perform approximate reasoning on multiple logical relationships,a multi-relation approximate reasoning model based on Uncertain KG Embedding(UKGE)named UDConEx(Uncertainty DistMult(Distance Multiplicative)and complex Convolution Embedding)was proposed.Firstly,the UDConEx combined the characteristics of DistMult and ComplEx(Complex Embedding),enabling it to infer symmetric and asymmetric relationships.Subsequently,Convolutional Neural Network(CNN)was employed by the UDConEx to capture the interactive information in the uncertain KG,thereby enabling it to reason inverse and transitive relationships.Lastly,the neural network was employed to carry out confidence learning of uncertain KG information,enabling the UDConEx to perform approximate reasoning within the UKGE space.The experimental results on three public data sets of CN15k,NL27k,and PPI5k show that,compared with MUKGE(Multiplex UKGE)model,the Mean Absolute Error(MAE)of confidence prediction is reduced by 6.3%,30.1%and 44.9%for CN15k,NL27k and PPI5k respectively;in the task of relation fact ranking,the linear-based Normalized Discounted Cumulative Gain(NDCG)is improved by 5.8%and 2.6%for CN15k and NL27k respectively;in the multi-relation approximate reasoning task,it is verified that the UDConEx has the approximate reasoning ability of multiple logical relationships.The inability of traditional embedding models to predict confidence is compensated for by the UDConEx,which achieves approximate reasoning for multiple logical relationships and offers enhanced accuracy and interpretability in uncertainty KG reasoning.
作者 李健京 李贯峰 秦飞舟 李卫军 LI Jianjing;LI Guanfeng;QIN Feizhou;LI Weijun(School of Information Engineering,Ningxia University,Yinchuan Ningxia 750021,China;School of Computer Science and Engineering,North Minzu University,Yinchuan Ningxia 750021,China)
出处 《计算机应用》 CSCD 北大核心 2024年第6期1751-1759,共9页 journal of Computer Applications
基金 国家自然科学基金资助项目(62066038) 宁夏自然科学基金资助项目(2022AAC03026,2021AAC03102) 宁夏大学2023研究生创新项目。
关键词 知识图谱 多关系推理 近似推理 不确定性 卷积神经网络 Knowledge Graph(KG) multi-relation reasoning approximate reasoning uncertainty Convolutional Neural Network(CNN)
  • 相关文献

参考文献3

二级参考文献97

  • 1Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41.
  • 2Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250.
  • 3Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19.
  • 4Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127.
  • 5Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 6Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394.
  • 7Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval [M]. Cambridge, UK: Cambridge University Press, 2008.
  • 8Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their eompositionality [C] //Proe of NIPS. Cambridge, MA: MIT Press, 2013:3111-3119.
  • 9Zhao Y, Liu Z, Sun M. Phrase type sensitive tensor indexing model for semantic composition [C] //Proc of AAAI. Menlo Park, CA: AAAI, 2015: 2195-2202.
  • 10Zhao Y, Liu Z, Sun M. Representation learning for measuring entity relatedness with rich information [C] //Proc of IJCAI. San Francisco, CA: Morgan Kaufmann, 2015: 1412-1418.

共引文献259

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部