期刊文献+

饱和非线性光学介质中带折射率项的薛定谔方程的数值模拟

Numerical simulation of the Schrödinger equation with refractive index term in saturated nonlinear optical medium
下载PDF
导出
摘要 首先将带折射率项的非线性薛定谔方程转化成无限维哈密尔顿系统,证明了方程的质量和能量守恒特性;再利用傅里叶拟谱方法和平均向量场方法离散方程,对离散格式中非积分项采用Boole离散进行线积分近似,得到了离散方程的能量守恒数值格式,同时给出了方程的辛格式;然后以不同振幅的入射双曲正割型光脉冲为初值条件,模拟了保能量格式和辛格式在不同参数条件下光孤子的演化过程.最后分析了不同初始光脉冲和参数对光孤子传输的影响和保方程质量和能量守恒特性. Firstly,the nonlinear Schrödinger equation with refractive index term was transformed into an infinitedimensional Hamiltonian system,and the mass and energy conservation properties of the equation were proved.Secondly,the Fourier pseudo-spectral method and the average vector field method were performed to discretize the Schrödinger equation,the Boole discrete line integral approximation was used for the non-integral term in the discrete format,and the discrete energy conservation numerical format of the equation was obtained,and the symplectic scheme of the equation was proposed.Thirdly,the different hyperbolic secant pulses were used as the initial value conditions,the evolution of optical soliton under the different parameters of the energy preserving scheme and the symplectic scheme was simulated.Finally,the effects of different initial optical pulses and parameters on optical soliton transmission were analyzed,and the mass and energy preservation property of the equation were also investigated.
作者 张静娴 孙建强 杨斯淇 Zhang Jingxian;Sun Jianqiang;Yang Siqi(School of Mathematics and Statistics,Hainan University,Haikou 570228,China)
出处 《海南大学学报(自然科学版)》 CAS 2024年第2期121-129,共9页 Natural Science Journal of Hainan University
基金 国家自然科学基金(11961020) 海南省自然科学基金(120RC450)。
关键词 带折射率项的薛定谔方程 光孤子传输 哈密尔顿系统 平均向量场方法 Schrödinger equation with refractive index term optical soliton transport Hamiltonian system average vector field method
  • 相关文献

参考文献4

二级参考文献62

  • 1钟先琼,陈建国,李大义.三、五阶非线性光纤中的交叉相位调制非稳研究[J].中国激光,2005,32(8):1035-1039. 被引量:14
  • 2桑志文,罗开基,桑明煌.五阶非线性对光纤中高斯型脉冲传输特性的影响[J].量子电子学报,2007,24(2):248-252. 被引量:4
  • 3Hong W P. Modulational instability of optical waves in the high dispersive cubic-quintic nonlinear SchrSdinger equation [J]. Optics Communications, 2002, 213: 173-182.
  • 4Hirota R. Exact envelope-soliton of a nonlinear wave equation [J]. J. Math. Phys., 1973, 14: 805-809.
  • 5Agrawal G P. Nonlinear Fiber Optics [M]. New York: Acadermic Press, 1995.
  • 6Marcuse D, Wiesenseld J M. Chirped picosecond pulses: evaluation of the time-dependent wavelength for semiconductor film lasers [J]. Appl. Opt., 1984, 23(1): 74-81.
  • 7Soto-Crespo J M, Akhmediev N N, Afanasjev V V, et al. Pulse solutions of the cubic-quintic complex Ginzburg- Landau equation in the case of normal dispersion [J]. Phys. Rev. E, 1997, 55: 4783-4796.
  • 8Joshua Soneson, Avner Peleg. Effect of quintic nonlinearity on soliton collisions in optical fibers [J]. Physica D, 2004, 195: 123-140.
  • 9Gross E 1963 J. Math. Phys. 4 195.
  • 10Wadati M, Izuka T and Hisakado M 1992 J. Phys. Soc. Jpn. 61 2241.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部