期刊文献+

双创课程思政案例个性化推荐方法设计

Design of Personalized Recommendation Method for Ideological and Political Cases in Innovation and Entrepreneurship Courses
下载PDF
导出
摘要 不同学习者的兴趣和基础差异较大,“双创”课程案例较多,思政案例个性化推荐有利于增强学习者的学习效果。针对教学目标,确立思政元素,收集思政案例,审核评估案例,提取学习者特征数据与案例特征进行标签化,构建“双创”教育课程思政案例库。提出使用基于内容的个性化推荐过程,将案例推荐给学习者,将思政元素融入教学过程,帮助学习者进行个性化学习。 Diff erent students have diff erent interests and foundations.There are many cases of innovation and entrepreneurship courses.Personalized recommendation of ideological and political cases is conducive to improving students’learning eff ect.According to the teaching objectives,we should establish ideological and political elements,collect ideological and political cases,review and evaluate cases,extract learner characteristic data and label case characteristics,and build a innovation and entrepreneurship education case library of ideological and political education in curriculum.It proposes to use the content based personalized recommendation process,recommend cases to learners,integrate ideological and political elements into the teaching process,and assist learners in personalized learning.
作者 曹栩宁 钟元生 CAO Xuning;ZHONG Yuansheng
出处 《中国教育技术装备》 2022年第18期53-56,共4页 China Educational Technology & Equipment
基金 2020年江西省高等学校教学改革研究课题“科创导向的《互联网+创新创业方法》金课建设与实践”(编号:JXJG-20-4-8)资助。
关键词 “双创”教育 课程思政 思政案例库 个性化推荐 互联网+创新创业方法 思政元素 innovation and entrepreneurship education ideological and political education in curriculum ideological and political case base personalized recommendations Internet+innovation and entrepreneurship methods ideological and political elements
  • 相关文献

参考文献5

二级参考文献39

  • 1沈翠珍,沈勤,杨莉莉,章琼芝.内科护理学课程思政教学的探索与实践[J].中国高等医学教育,2021(6):63-64. 被引量:12
  • 2http: //www. springerlink, com/content/y37r25/65n4k1701.
  • 3http: //www. springerlink, com/eontent/f8723k2588773870.
  • 4JI A T, YEON C, KIM H, et al. Collaborative tagging in recommender systems [ C ] // Proceedings of the 20th Australian Joint Conference on Artificial Intelligence. Berlin: SpringerVerlag, 2007: 377-386.
  • 5http: //www, springerlink, conr/index/m5688r6761448612, pdf.
  • 6HAYMAN S. Folksonomies and tagging: new developments in social bookmarking [ C ] //Proceedings of the Ark Group Conference: Developing and Improving Classification Schemes. Rydges World Square, Sydney, 2007.
  • 7NAKAMOTO R, et al. Tag-based contextual collaborative filtering [ J]. IAENG International Journal of Computer Science, 2007, 34 (2): 214-219.
  • 8ZHAO Shiwan, DU Nan, NAUERZ A, et al. Improved recommendation based on collaborative tagging behaviors [ C ] // Proceedings of the International Conference on Intelligent User Interfaces. New Mexico: ACM Press, 2008: 413-416.
  • 9SASAKI A, MIYATA T, INAZUMI Y. Web content recommendation system based on similarities among contents cluster of social bookmark [C] //DBWeb 2006, 2006: 59-66,.
  • 10NIWA S, DO/ T, HONIDEN S. Web page recommender system based on folksonomy mining [ C ] // Proceedings of the Third International Conference on Information Technology. New Generations, ITNG, 2006: 388-393.

共引文献4066

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部