期刊文献+

基于形态波动一致性偏移距离的滚动轴承剩余寿命预测方法 被引量:1

Residual life prediction method of rolling bearing based on morphology fluctuation conformance deviation distance
下载PDF
导出
摘要 针对滚动轴承完全失效阈值的设置多根据人工经验选取、退化轨迹适配忽略时间序列整体形态趋势变化的问题,提出一种基于形态波动一致性偏移距离的滚动轴承失效阈值设置与剩余寿命预测方法。首先,引入前向差分(FD)对振动信号进行预处理,并对处理后的信号计算均方根(RMS)值作为退化指标(DI);其次,融合双指数模型对DI曲线进行拟合确定最终参考轴承的完全失效阈值(TFT),降低TFT的设置偏差;最后,利用形态波动一致性偏移距离(MFCDD)计算DI曲线相似度,完成对测试轴承失效阈值的设置,并利用粒子滤波更新双指数模型完成滚动轴承的剩余使用寿命(RUL)预测。在XJTY-SY数据集上的实验结果表明,滚动轴承RUL预测的score得分较动态时间规整匹配方法、卷积神经网络-双向长短期记忆网络预测方法分别提升了82.97%和73.64%;在PHM2012数据集上的实验结果表明,滚动轴承RUL预测的score得分较动态时间规整匹配方法、卷积神经网络-双向长短期记忆网络预测方法、长短期记忆-自注意力机制预测方法分别提升了99.99%、60.65%和99.90%。 Aiming at the problem that the setting of the complete failure threshold of rolling bearings is mostly selected according to artificial experience,and the degradation trajectory adaptation ignores the overall morphological trend change of the time series,a method for setting the failure threshold and predicting the remaining life of rolling bearings based on the consistent offset distance of morphological fluctuation is proposed.Firstly,the forward difference(FD)is introduced to preprocess the vibration signal,and the root mean square(RMS)value of the processed signal is calculated as the degradation indicator(DI).Secondly,the double exponential model is used to fit the DI curve to determine the total failure threshold(TFT)of the final reference bearing,so as to reduce the setting deviation of TFT.Finally,the similarity of the DI curve is calculated by using the morphology fluctuation conformance deviation distance(MFCDD)to complete the setting of the failure threshold of the test bearing,and the remaining useful life(RUL)prediction of the rolling bearing is completed by using the particle filter to update the double exponential model.The experimental results on the XJTY-SY dataset show that the score of rolling bearing RUL prediction is 82.97%and 73.64%higher than that of dynamic time warping matching method,convolutional neural network and bidirectional long short-term memory network prediction method,respectively.The experimental results on the PHM2012 dataset show that the score of rolling bearing RUL prediction is 99.99%,60.65%and 99.90%higher than that of dynamic time warping matching method,convolutional neural network and bidirectional long-term and short-term memory network prediction method,long-term and short-term memory and self-attention mechanism prediction method.
作者 秦娅 马军 熊新 朱江艳 Qin Ya;Ma Jun;Xiong Xin;Zhu Jiangyan(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;Yunnan International Joint Laboratory of Intelligent Control and Application of Advanced Equipment,Kunming University of Science and Technology,Kunming 650500,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2024年第3期32-44,共13页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(62163020,62173168) 云南省重大科技专项项目(202202AD080005) 云南省基础研究计划项目(202101BE070001-055)资助。
关键词 滚动轴承 失效阈值 双指数模型 剩余寿命预测 rolling bearings failure threshold double exponential model RUL prediction
  • 相关文献

参考文献12

二级参考文献92

  • 1陈保家,陈学力,肖文荣,陈法法,肖能齐,刘强.小样本下滚动轴承故障的多源域迁移诊断方法[J].电子测量与仪器学报,2022,36(2):219-228. 被引量:12
  • 2高占宝,李行善,梁旭,于劲松.工程系统健康描述及基于GFRF方法的健康监测[J].北京航空航天大学学报,2006,32(9):1026-1030. 被引量:3
  • 3奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:56
  • 4DOYEN L, GAUDOIN O. Modeling and assessment of aging and efficiency of corrective and planned preventive maintenance [ J ]. IEEE Transactions on Reliability,2011,60 (4) :759-769.
  • 5HENG A, ZHANG S, TAN A C, et al. Rotating machinery prognostics : State of the art, challenge and opportunities [ J ]. Mechanical Systems and Signal Processing, 2009, 23 ( 3 ) : 724-739.
  • 6TANG D, MAKIS V, JAFARI L, et al. Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring [ J]. Reliability Engineering & System Safety,2015,134 : 198-207.
  • 7VACHTSEVANOS G,LEWIS F,ROEMER M, et al. Intelligent fault diagnosis and prognosis for engineering systems[ M ]. New Jersey : Wiley ,2006:289-300.
  • 8LIAO L X,FEL1X K. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction [ J ]. IEEE Transactions on Reliability,2014,63( 1 ) : 191-207.
  • 9SIX S,WANG W,HU C H,et al. Remaining usefut life estima- tion:A review on the statistical data driven approaches [ J ]. Eu- ropean Journal of Operational Research ,2011,213( 1 ) : 1-14.
  • 10WANG T Y. Trajectory similarity based prediction for remaining useful life estimation [ D ]. Cincinnati : University of Cincinnati, 2010 -39-56.

共引文献286

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部