期刊文献+

Space debris environment engineering model 2019:Algorithms improvement and comparison with ORDEM 3.1 and MASTER-8

原文传递
导出
摘要 As an essential tool for realistic description of the current or future debris environment,the Space Debris Environment Engineering Model(SDEEM)has been developed to provide support for risk assessment of spacecraft.In contrast with SDEEM2015,SDEEM2019,the latest version,extends the orbital range from the Low Earth Orbit(LEO)to Geosynchronous Orbit(GEO)for the years 1958-2050.In this paper,improved modeling algorithms used by SDEEM2019 in propagating simulation,spatial density distribution,and spacecraft flux evaluation are presented.The debris fluxes of SDEEM2019 are compared with those of three typical models,i.e.,SDEEM2015,Orbital Debris Engineering Model 3.1(ORDEM 3.1),and Meteoroid and Space Debris Terrestrial Environment Reference(MASTER-8),in terms of two assessment modes.Three orbital cases,including the Geostationary Transfer Orbit(GTO),Sun-Synchronous Orbit(SSO)and International Space Station(ISS)orbit,are selected for the spacecraft assessment mode,and the LEO region is selected for the spatial density assessment mode.The analysis indicates that compared with previous algorithms,the variable step-size orbital propagating algorithm based on semi-major axis control is more precise,the spatial density algorithm based on the second zonal harmonic of the non-spherical Earth gravity(J_(2))is more applicable,and the result of the position-centered spacecraft flux algorithm is more convergent.The comparison shows that SDEEM2019 and MASTER-8 have consistent trends due to similar modeling processes,while the differences between SDEEM2019 and ORDEM 3.1 are mainly caused by different modeling approaches for uncatalogued debris.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期392-409,共18页 中国航空学报(英文版)
  • 相关文献

参考文献2

二级参考文献18

  • 1KESSLER D J, REYNOLDS R C, ANZ-MEADOR P D.Orbital debris environment for spacecraft designed tooperate in low Earth orbit: NASA-TM-100471[R], 1989.
  • 2KESSLER D J, ZHANG J, MATNEY M J, et al. Acomputer-based orbital debris environment model forspacecraft design and observation in low-Earth orbit:NASA Technical Memorandum 104825[R], 1996.
  • 3LIOU J C, MATNEY M J, ANZ-MEADOR P D, et al.The new NASA Orbital Debris Engineering ModelORDEM2000: NASA/TP-2002-2107802[R].
  • 4XU Y L, HORSTMAN M, KRISKO P H, et al.Modeling of LEO orbital debris populations forORDEM2008[J]. Advances in Space Research, 2009, 43:769-782.
  • 5KRISKO P H. NASA’s new orbital debris engineeringmodel, ORDEM2010[J]. ESA Special Publication, 2010,680: 1-13.
  • 6KRISKO P H. ORDEM 3.0 status[C].30th Inter-AgencyDebris Coordination Committee Meeting (IADC).Montreal, Canada, 2012-05: 1-9.
  • 7KLINKRAD H, SUNNUS H, BENDISCH J. Developmentstatus of the ESA space debris reference model[J].Advances in Space Research, 1995, 16(11): 93-102.
  • 8KLINKRAD H, SUNNUS H, BENDISCH J, et al. Anintroduction to the 1997 ESA MASTERmodel[C].Proceedings of the Second EuropeanConference on Space Debris. Darmstadt, Germany, 1997:217-224.
  • 9KLINKRAD H, BENDISCH J, BUNTE K D, et al. TheESA MASTER99 space debris and meteoroid referencemodel[J]. Advances in Space Research, 2001, 28(9):1355-1366.
  • 10BENDISCH J, BUNTE K D, KLINKRAD H, et al.The MASTER2001 model[J]. Advances in SpaceResearch, 2004, 34(5): 959-968.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部