摘要
随着经济的发展和一线城市生活压力的增大,越来越多的人迁移城市以及返回家乡发展,为了高效服务用户和提升用户产品使用体验,提出基于LightGBM、CatBoost等算法来预测返乡发展人群,并进行了异构模型融合。通过模型对比,所提融合模型有更好的效果,可以为服务和产品提供依据,减少流失优化感知,提高市场保有率。
With the development of the Chinese economy and the increasing pressure of living in first-tier cities,more and more young people choose to return to their hometowns for development.To efficiently serve users and improve their product usage experience,the use of algorithms such as LightGBM and CatBoost was proposed to predict the returning population,thereby providing a basis for services and products,and improving user market retention rates.
作者
杜昭
谢国城
陈静旋
张伟斌
DU Zhao;XIE Guocheng;CHEN Jingxuan;ZHANG Weibin(Guangzhou Branch of China Telecom Co.,Ltd.,Guangzhou 510062,China;Guangdong Eshore Technology Co.,Ltd.,Guangzhou 510627,China)
出处
《电信科学》
北大核心
2024年第5期131-140,共10页
Telecommunications Science