期刊文献+

基于机器学习技术的返乡发展人群预测模型研究与应用

Research and application of prediction model for returning home development population based on machine learning technology
下载PDF
导出
摘要 随着经济的发展和一线城市生活压力的增大,越来越多的人迁移城市以及返回家乡发展,为了高效服务用户和提升用户产品使用体验,提出基于LightGBM、CatBoost等算法来预测返乡发展人群,并进行了异构模型融合。通过模型对比,所提融合模型有更好的效果,可以为服务和产品提供依据,减少流失优化感知,提高市场保有率。 With the development of the Chinese economy and the increasing pressure of living in first-tier cities,more and more young people choose to return to their hometowns for development.To efficiently serve users and improve their product usage experience,the use of algorithms such as LightGBM and CatBoost was proposed to predict the returning population,thereby providing a basis for services and products,and improving user market retention rates.
作者 杜昭 谢国城 陈静旋 张伟斌 DU Zhao;XIE Guocheng;CHEN Jingxuan;ZHANG Weibin(Guangzhou Branch of China Telecom Co.,Ltd.,Guangzhou 510062,China;Guangdong Eshore Technology Co.,Ltd.,Guangzhou 510627,China)
出处 《电信科学》 北大核心 2024年第5期131-140,共10页 Telecommunications Science
关键词 LightGBM 特征工程 KNN K折交叉验证 LightGBM feature engineering KNN K-fold cross-validation
  • 相关文献

参考文献13

二级参考文献92

  • 1钟清流,蔡自兴.基于支持向量机的渐近式半监督式学习算法[J].计算机工程与应用,2006,42(25):19-22. 被引量:4
  • 2B.hm C, Krebs F. The k-nearest neighbour join: Turbo charging the KDD process. Knowledge and Information Systems, 2004, 6(6): 728 -749.
  • 3Xia C, Lu H, Ooi B C, et 01. Gorder: an efficient method for kNN join processing. Proceedings of the 30th International Conference on Very Large Data Bases, Toronto, Canada, 2004: 756-767.
  • 4Yu C, Cui B, Wang S, et ol. Efficient index-based kNN join processing for high-dimensional data. Information and Software Technology, 2007, 49(4): 332-344.
  • 5Chen Y, Patel J M. Efficien! evaluation of all-nearest-neighbor queries. Proceedings of the 23rd International Conference on Data Engineering, lstanbul, Turkey, 2007:1056.1065.
  • 6Emrich T, Graf F, Kriegel tl P, et ,d. Optimizing all-nearest- neighbor queries with lrigonomeiric Imming. Lecture Notes in Computer Science, 201016187): 501-518.
  • 7Zhang J, Mamoulis N, Papadias D, et cd. All-nearest-neighbors queries in spatial databases. Proceedings of the 16th International Conference on Scientific and Statistical Database Management,Santorini Island, Greece, 2004:297-306.
  • 8Kouiroukidis N, Evangel!dis G. The effects of dimensionality curse ira high dimensimml kNN search. Proceedings of 15th Panhellenic Conference on Inflarmatics (PCI), Gastonia, USA, 2011:41.45.
  • 9Weber R, Scbek H J, Bh)t! S. A quantitative analysis and perlbrmamre study for similarity-search methods in high-dimensional spaces. Proceedings of the 24rd International Conference on Veu Large 1)ata Bases, New York, USA, 1998: 194- 205.
  • 10A.Ta S, Mount I) M, Netanyalm N S, et al. An optimal algorithm for approximate nearest neighhor searching fixed diuaensions. Journal of the ACM (JACM), 1998, 45(6): 891-923.

共引文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部