期刊文献+

基于大数据分析的矿山机电设备故障诊断与预测 被引量:1

Fault diagnosis and prediction of mining electromechanical equipment based on big data analysis
下载PDF
导出
摘要 矿山机电设备的故障诊断和预测对于矿山的安全和生产效率具有重要意义。传统的故障诊断方法往往依赖于经验和人工分析,存在着准确性低、实时性差等问题。随着大数据技术的快速发展,大数据分析在矿山机电设备故障诊断与预测中展现出巨大潜力。本文旨在深入探讨大数据分析在该领域中的优势和关键技术,并通过一个具体的应用案例展示其实际应用效果。 The fault diagnosis and prediction of mining electromechanical equipment are of great significance for the safety and production efficiency of mines.T raditional fault diagnosis methods often rely on experience and manual analysis,which have problems such as low accuracy and poor real-time performance.With the rapid development of big data technology,big data analysis has shown great potential in the diagnosis and prediction of faults in mining electromechanical equipment.This article aims to deeply explore the advantages and key technologies of big data analysis in this field,and demonstrate its practical application effect through a specific application case.
作者 王鹏 杨飞 WANG Peng;YANG Fei(Shandong Energy Zao Mining Group Binhu Coal Mine,Zaozhuang 277100,China)
出处 《世界有色金属》 2024年第4期42-44,共3页 World Nonferrous Metals
关键词 大数据分析 矿山机电设备 故障诊断和预测 big data analysis Mining electromechanical equipment Fault diagnosis and prediction
  • 相关文献

参考文献5

二级参考文献33

共引文献22

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部